化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1241-1251.DOI: 10.16085/j.issn.1000-6613.2023-0501
• 能源加工与技术 • 上一篇
收稿日期:
2023-03-31
修回日期:
2023-08-24
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
杨富鑫
作者简介:
陈宏飞(1997—),男,硕士研究生,研究方向为中深层地热利用。E-mail:fly1984_2020@163.com。
基金资助:
CHEN Hongfei(), YANG Fuxin(
), TAN Houzhang, CAO Jingyu, WU Shengyuan
Received:
2023-03-31
Revised:
2023-08-24
Online:
2024-03-10
Published:
2024-04-11
Contact:
YANG Fuxin
摘要:
在中深层地热地埋管(DBHE)供热技术应用中,主要使用多个地埋管构成管群为建筑供暖。为了研究中深层同轴地埋管管群换热性能,本文基于西安市西咸新区典型地质分布,构建了中深层同轴地埋管管群数值模型,研究了不同间距、不同分布下各地埋管换热器间热交互作用以及长期取热期水温衰减规律。结果表明,多井集群供暖过程中周围岩土所形成的“冷堆积”现象是导致地埋管集群供暖能力逐年下降的主要原因;当地埋管间距从5m增至25m,平均出口水温和取热功率分别提升3.86%和11.5%;在西咸新区典型地质条件分布下,地埋管间间距应保持在15m以上;本文提出的四种管群分布中,地埋管呈直线分布时各地埋管出口水温和取热功率衰减最小,其中心地埋管出口水温仅衰减5.74%。在工程设计中,中深层地埋管管群应尽可能直线排布,避免重叠排布。
中图分类号:
陈宏飞, 杨富鑫, 谭厚章, 曹静宇, 吴盛源. 中深层地热地埋管管群换热性能模拟和布置优化[J]. 化工进展, 2024, 43(3): 1241-1251.
CHEN Hongfei, YANG Fuxin, TAN Houzhang, CAO Jingyu, WU Shengyuan. Heat transfer performance simulation and optimization of deep borehole heat exchanger array[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1241-1251.
井深/m | 岩性 | 井深/m | 岩性 |
---|---|---|---|
200 | 灰绿色泥岩 | 1520 | 灰绿色泥岩 |
260 | 灰绿色泥岩 | 1625 | 紫红色细砂岩 |
365 | 灰绿色泥岩 | 1625 | 紫红色细砂岩 |
470 | 灰绿色泥岩 | 1730 | 紫红色细砂岩 |
575 | 灰绿色泥岩 | 1835 | 紫红色细砂岩 |
680 | 灰绿色泥岩 | 1940 | 紫红色细砂岩 |
785 | 紫红色细砂岩 | 2045 | 紫红色细砂岩 |
890 | 紫红色细砂岩 | 2150 | 灰绿色泥岩 |
995 | 紫红色细砂岩 | 2255 | 灰绿色泥岩 |
1100 | 紫红色细砂岩 | 2360 | 灰绿色泥岩 |
1205 | 紫红色细砂岩 | 2465 | 灰绿色泥岩 |
1310 | 灰绿色泥岩 | 2510 | 紫红色细砂岩 |
1415 | 灰绿色泥岩 |
表1 创新港区域钻井岩性信息
井深/m | 岩性 | 井深/m | 岩性 |
---|---|---|---|
200 | 灰绿色泥岩 | 1520 | 灰绿色泥岩 |
260 | 灰绿色泥岩 | 1625 | 紫红色细砂岩 |
365 | 灰绿色泥岩 | 1625 | 紫红色细砂岩 |
470 | 灰绿色泥岩 | 1730 | 紫红色细砂岩 |
575 | 灰绿色泥岩 | 1835 | 紫红色细砂岩 |
680 | 灰绿色泥岩 | 1940 | 紫红色细砂岩 |
785 | 紫红色细砂岩 | 2045 | 紫红色细砂岩 |
890 | 紫红色细砂岩 | 2150 | 灰绿色泥岩 |
995 | 紫红色细砂岩 | 2255 | 灰绿色泥岩 |
1100 | 紫红色细砂岩 | 2360 | 灰绿色泥岩 |
1205 | 紫红色细砂岩 | 2465 | 灰绿色泥岩 |
1310 | 灰绿色泥岩 | 2510 | 紫红色细砂岩 |
1415 | 灰绿色泥岩 |
材料 | 密度/kg·m-3 | 比热容/J·kg-1·K-1 | 热导率/W·m-1·K-1 |
---|---|---|---|
高密度聚乙烯管 | 950 | 2300 | 0.42 |
J55钢管 | 7850 | 498 | 40 |
水泥砂浆 | 1791 | 1348 | 2.8 |
紫红色砂岩 | 2600 | 878 | 3.662 |
灰绿色泥岩(Ⅰ) | 2027 | 1099.39 | 2.767 |
灰绿色泥岩(Ⅱ) | 1551 | 1410.02 | 2.662 |
表2 模型中各材料热物性参数
材料 | 密度/kg·m-3 | 比热容/J·kg-1·K-1 | 热导率/W·m-1·K-1 |
---|---|---|---|
高密度聚乙烯管 | 950 | 2300 | 0.42 |
J55钢管 | 7850 | 498 | 40 |
水泥砂浆 | 1791 | 1348 | 2.8 |
紫红色砂岩 | 2600 | 878 | 3.662 |
灰绿色泥岩(Ⅰ) | 2027 | 1099.39 | 2.767 |
灰绿色泥岩(Ⅱ) | 1551 | 1410.02 | 2.662 |
取暖 年限 | 温度/℃ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
5m | 10m | 15m | 20m | 25m | ||||||
#1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | |
1 | 25.21 | 24.95 | 25.59 | 25.57 | 25.60 | 25.60 | 25.60 | 25.59 | 25.59 | 25.58 |
2 | 24.55 | 24.22 | 25.11 | 24.94 | 25.23 | 25.17 | 25.26 | 25.23 | 25.33 | 25.28 |
3 | 24.24 | 23.9 | 24.83 | 24.61 | 25.01 | 24.87 | 25.09 | 25.01 | 25.17 | 25.09 |
4 | 24.06 | 23.71 | 24.66 | 24.41 | 24.86 | 24.7 | 24.96 | 24.85 | 25.06 | 24.95 |
5 | 23.95 | 23.61 | 24.54 | 24.28 | 24.77 | 24.58 | 24.88 | 24.73 | 24.98 | 24.86 |
6 | 23.89 | 23.54 | 24.47 | 24.2 | 24.7 | 24.49 | 24.82 | 24.65 | 24.94 | 24.78 |
7 | 23.85 | 23.5 | 24.42 | 24.14 | 24.65 | 24.43 | 24.78 | 24.6 | 24.9 | 24.73 |
8 | 23.82 | 23.47 | 24.39 | 24.11 | 24.62 | 24.39 | 24.75 | 24.56 | 24.87 | 24.69 |
9 | 23.81 | 23.45 | 24.37 | 24.08 | 24.59 | 24.36 | 24.73 | 24.53 | 24.85 | 24.66 |
10 | 23.80 | 23.44 | 24.35 | 24.07 | 24.58 | 24.35 | 24.71 | 24.51 | 24.84 | 24.64 |
表3 不同间距下地埋管换热器各年取暖季平均出口水温
取暖 年限 | 温度/℃ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
5m | 10m | 15m | 20m | 25m | ||||||
#1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | #1 | #2 | |
1 | 25.21 | 24.95 | 25.59 | 25.57 | 25.60 | 25.60 | 25.60 | 25.59 | 25.59 | 25.58 |
2 | 24.55 | 24.22 | 25.11 | 24.94 | 25.23 | 25.17 | 25.26 | 25.23 | 25.33 | 25.28 |
3 | 24.24 | 23.9 | 24.83 | 24.61 | 25.01 | 24.87 | 25.09 | 25.01 | 25.17 | 25.09 |
4 | 24.06 | 23.71 | 24.66 | 24.41 | 24.86 | 24.7 | 24.96 | 24.85 | 25.06 | 24.95 |
5 | 23.95 | 23.61 | 24.54 | 24.28 | 24.77 | 24.58 | 24.88 | 24.73 | 24.98 | 24.86 |
6 | 23.89 | 23.54 | 24.47 | 24.2 | 24.7 | 24.49 | 24.82 | 24.65 | 24.94 | 24.78 |
7 | 23.85 | 23.5 | 24.42 | 24.14 | 24.65 | 24.43 | 24.78 | 24.6 | 24.9 | 24.73 |
8 | 23.82 | 23.47 | 24.39 | 24.11 | 24.62 | 24.39 | 24.75 | 24.56 | 24.87 | 24.69 |
9 | 23.81 | 23.45 | 24.37 | 24.08 | 24.59 | 24.36 | 24.73 | 24.53 | 24.85 | 24.66 |
10 | 23.80 | 23.44 | 24.35 | 24.07 | 24.58 | 24.35 | 24.71 | 24.51 | 24.84 | 24.64 |
1 | 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告-2021-城镇住宅专题[M]. 北京: 中国建筑工业出版社, 2021. |
Building energy conservation research center of Tsinghua University. Annual development research report of building energy efficiency in China 2021(special topics of urban housing)[M]. Beijing: China Architecture & Building Press, 2021. | |
2 | 王贵玲, 杨轩, 马凌, 等. 地热能供热技术的应用现状及发展趋势[J]. 华电技术, 2021, 43(11): 15-24. |
WANG Guiling, YANG Xuan, MA Ling, et al. Status quo and prospects of geothermal energy in heat supply[J]. Huadian Technology, 2021, 43(11): 15-24. | |
3 | RYBACH L, PFISTER M. Temperature predictions and predictive temperatures in deep tunnels[J]. Rock Mechanics and Rock Engineering, 1994, 27(2): 77-88. |
4 | 刘俊, 蔡皖龙, 王沣浩, 等. 深层地源热泵系统实验研究及管井结构优化[J]. 工程热物理学报, 2019, 40(9): 2143-2150. |
LIU Jun, CAI Wanlong, WANG Fenghao, et al. Experimental study on deep ground source heat pump system and optimization of tube-well structure[J]. Journal of Engineering Thermophysics, 2019, 40(9): 2143-2150. | |
5 | WANG Zhihua, WANG Fenghao, LIU Jun, et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system[J]. Energy Conversion and Management, 2017, 153: 603-615. |
6 | CHEN Shuang, WITTE Francesco, KOLDITZ Olaf, et al. Shifted thermal extraction rates in large borehole heat exchanger array : A numerical experiment[J]. Applied Thermal Engineering, 2020, 167: 114750. |
7 | TANG Fujiao, NOWAMOOZ Hossein, WANG Dawei, et al. A simplified approach to predicting the heat extraction rate of borehole heat exchangers from parametric analysis[J]. Geothermics, 2022, 101: 102358. |
8 | ZENG H Y, DIAO N R, FANG Z H. A finite line-source model for boreholes in geothermal heat exchangers[J]. Heat Transfer-Asian Research, 2002, 31(7): 558-567. |
9 | NALDI Claudia, ZANCHINI Enzo. Effects of the total borehole length and of the heat pump inverter on the performance of a ground-coupled heat pump system[J]. Applied Thermal Engineering, 2018, 128: 306-319. |
10 | CIMMINO Massimo, BERNIER Michel, ADAMS François. A contribution towards the determination of g-functions using the finite line source[J]. Applied Thermal Engineering, 2013, 51(1/2): 401-412. |
11 | BANDOS Tatyana V, Álvaro CAMPOS-CELADOR, LÓPEZ-GONZÁLEZ Luis M, et al. Finite cylinder-source model for energy pile heat exchangers: Effects of thermal storage and vertical temperature variations[J]. Energy, 2014, 78: 639-648. |
12 | HOLMBERG Henrik, ACUNA Jose, NASS Erling, et al. Thermal evaluation of coaxial deep borehole heat exchangers[J]. Renewable Energy, 2016, 97: 65-76. |
13 | SONG Xianzhi, WANG Gaosheng, SHI Yu, et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018, 164: 1298-1310. |
14 | FANG Liang, DIAO Nairen, SHAO Zhukun, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings, 2018, 167: 79-88. |
15 | WANG Changlong, LU Yuehong, CHEN Lewen, et al. A semi-analytical model for heat transfer in coaxial borehole heat exchangers[J]. Geothermics, 2021, 89: 101952. |
16 | KANG Wenkai, FENG Liubing, YANG Feifan, et al. Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW[J]. Journal of Groundwater Science and Engineering, 2020, 8(4): 315-327. |
17 | HU Xincheng, BANKS Jonathan, WU Linping, et al. Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta[J]. Renewable Energy, 2020, 148: 1110-1123. |
18 | HUANG Yibin, ZHANG Yanjun, XIE Yangyang, et al. Field test and numerical investigation on deep coaxial borehole heat exchanger based on distributed optical fiber temperature sensor[J]. Energy, 2020, 210: 118643. |
19 | LI Chao, GUAN Yanling, WANG Xing, et al. Experimental and numerical studies on heat transfer characteristics of vertical deep-buried U-bend pipe to supply heat in buildings with geothermal energy[J]. Energy, 2018, 142: 689-701. |
20 | LI Ji, XU Wei, LI Jianfeng, et al. Heat extraction model and characteristics of coaxial deep borehole heat exchanger[J]. Renewable Energy, 2021, 169: 738-751. |
21 | CAI Wanlong, WANG Fenghao, LIU Jun, et al. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems[J]. Applied Thermal Engineering, 2019, 149: 975-986. |
22 | ZHANG Fangfang, YU Mingzhi, SØRENSEN Bjørn R, et al. Heat extraction capacity and its attenuation of deep borehole heat exchanger array[J]. Energy, 2022, 254: 124430. |
23 | CAI Wanlong, WANG Fenghao, CHEN Shuang, et al. Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study[J]. Applied Energy, 2021, 289: 116590. |
24 | CAI Wanlong, WANG Fenghao, CHEN Chaofan, et al. Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts[J]. Energy, 2022, 241: 122937. |
25 | CHEN Feilong, BAI Yujie. Heat transfer character of deep multi-borehole under different geothermal recovery period[J]. Energy Reports, 2023, 9: 92-98. |
26 | 张道, 曹琦. 浅论陕西省水文地质构造及其适合的地源热泵形式[J]. 制冷与空调, 2010, 10(2): 14-17, 6. |
ZHANG Dao, CAO Qi. Discussion of hydrogeological structures of Shanxi Province and the applicable forms of GSHP[J]. Refrigeration and Air-Conditioning, 2010, 10(2): 14-17, 6. |
[1] | 禹言芳, 丁鹏程, 孟辉波, 石博文, 姚云娟. 非牛顿流体在叶片式静态混合器中的传热强化特性[J]. 化工进展, 2024, 43(3): 1145-1156. |
[2] | 丁丽华, 徐洪涛, 张晨宇. 基于圆台波浪形换热管的潜热储热单元性能分析[J]. 化工进展, 2024, 43(3): 1214-1223. |
[3] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[4] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[5] | 汪健生, 张辉鹏, 刘雪玲, 傅煜郭, 朱剑啸. 多孔介质结构对储层内流动和换热特性的影响[J]. 化工进展, 2023, 42(8): 4212-4220. |
[6] | 齐承鲁, 张忠良, 王明超, 李耀鹏, 宫晓辉, 孙鹏, 郑斌. 内置管束布置对换热器内固体颗粒流动的影响[J]. 化工进展, 2023, 42(5): 2306-2314. |
[7] | 孙崇正, 樊欣, 李玉星, 许洁, 韩辉, 刘亮. 海上多孔介质通道内氢气换热与正仲氢转化的耦合特性[J]. 化工进展, 2023, 42(3): 1281-1290. |
[8] | 朱添宇, 孙琳, 任超, 罗雄麟. 基于全周期持续节能的换热网络滑动窗口分析与裕量缓释优化控制[J]. 化工进展, 2023, 42(3): 1195-1205. |
[9] | 纪国剑, 尹琦瑞, 陆蓓蓓, 黄鹏圆, 周晓庆, 顾金铭. 波纹板对湿空气冷凝传热特性影响的实验研究[J]. 化工进展, 2023, 42(10): 5076-5082. |
[10] | 刘君康, 王宏超, 熊通, 晏刚, 郭宁, 刘睿. 热泵空调翅片管换热器流路优化研究进展[J]. 化工进展, 2023, 42(1): 107-117. |
[11] | 古新, 张前欣, 王超鹏, 方运阁, 李宁, 王永庆. U形导流板换热器传热和阻力性能分析[J]. 化工进展, 2022, 41(7): 3465-3474. |
[12] | 刘世杰, 莫逊, 涂爱民, 朱冬生, 谭连元. 新型纵流油冷却器壳程强化传热[J]. 化工进展, 2022, 41(7): 3475-3482. |
[13] | 梅响, 姚元鹏, 吴慧英. 连通微通道内过冷流动沸腾传热强化机理分析[J]. 化工进展, 2022, 41(6): 2884-2892. |
[14] | 朱孟帅, 王子龙, 孙向昕, 周翔. 高孔密度下泡沫铜的填充率对石蜡融化传热机理的影响[J]. 化工进展, 2022, 41(6): 3203-3211. |
[15] | 蒋宁, 张元毅, 范伟, 赵世超, 徐新杰, 徐英杰. 基于智能预测和机理模型的换热网络清洗决策[J]. 化工进展, 2022, 41(4): 1781-1792. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 256
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 257
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |