化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5592-5601.DOI: 10.16085/j.issn.1000-6613.2022-2246
收稿日期:
2022-12-04
修回日期:
2023-03-16
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
徐建全
作者简介:
韩昌亮(1987—),男,博士,副教授,研究方向为新能源换热器优化设计。E-mail:hanchangliang2022@163.com。
基金资助:
HAN Changliang1,2(), HUANG Yiyan1,2, XU Jianquan1,2(
)
Received:
2022-12-04
Revised:
2023-03-16
Online:
2023-11-20
Published:
2023-12-15
Contact:
XU Jianquan
摘要:
为了实现微通道换热器表面结构的高效设计,本文将数值模拟和实验手段相结合,以超临界氮气(supercritical nitrogen,SCN2)为流体工质,研究了不同凹穴形状(直微通道、圆形、矩形和梯形)和椭圆度对微通道流动与传热特性的影响,揭示了SCN2高效低阻强化换热机理。结果表明,相比于直微通道,圆形凹穴微通道中轴线上SCN2速度达到稳定值所需入口段距离更短,这是由于凹穴能够促使流体流动/热边界层一直处于破坏与重建的交替状态。圆形凹穴内流体旋涡形状与凹穴几何结构保持一致,其流阻特性和换热性能最优,梯形凹穴微通道次之,矩形凹穴微通道最差。微通道综合性能随着凹穴椭圆度增加呈先升高后降低变化趋势,当椭圆度为1时,其综合性能最优。研究结果对提高微通道换热器设计制造能力具有重要的意义。
中图分类号:
韩昌亮, 黄峄演, 徐建全. 不同结构凹穴微通道内超临界氮气流动与传热特性[J]. 化工进展, 2023, 42(11): 5592-5601.
HAN Changliang, HUANG Yiyan, XU Jianquan. Flow and heat transfer characteristics of supercritical nitrogen in micro-channel with different cavity structures[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5592-5601.
参数 | 数值 |
---|---|
计算域总长(L)/mm | 540 |
凹穴中心间距(L1)/mm | 78 |
每一侧凹穴个数(N) | 6 |
入口截面高度(H)/mm | 1 |
入口截面宽度(W)/mm | 3 |
圆形凹穴半径(R)/mm | 1.5 |
矩形凹穴宽度(W1)/mm | 3 |
矩形凹穴高度(W2)/mm | 3 |
梯形凹穴宽度(W3)/mm | 1.5 |
梯形凹穴高度(W4)/mm | 1.5 |
表1 凹穴微通道几何参数
参数 | 数值 |
---|---|
计算域总长(L)/mm | 540 |
凹穴中心间距(L1)/mm | 78 |
每一侧凹穴个数(N) | 6 |
入口截面高度(H)/mm | 1 |
入口截面宽度(W)/mm | 3 |
圆形凹穴半径(R)/mm | 1.5 |
矩形凹穴宽度(W1)/mm | 3 |
矩形凹穴高度(W2)/mm | 3 |
梯形凹穴宽度(W3)/mm | 1.5 |
梯形凹穴高度(W4)/mm | 1.5 |
位置 | 边界类型 | 参数设置 |
---|---|---|
微通道入口 | 质量流量入口边界 | Gin=650~950kg/(m2·s); Tin=113K |
微通道出口 | 压力出口边界 | Pout=7.5MPa |
微通道左/右壁面 | 对称面边界 | — |
固体壁面与SCN2交界面 | 无滑移边界 | u=v=w=0 |
微通道上/下壁面 | 恒定热流密度边界 | q=120kW/m2;δ=2mm |
表2 边界条件设置
位置 | 边界类型 | 参数设置 |
---|---|---|
微通道入口 | 质量流量入口边界 | Gin=650~950kg/(m2·s); Tin=113K |
微通道出口 | 压力出口边界 | Pout=7.5MPa |
微通道左/右壁面 | 对称面边界 | — |
固体壁面与SCN2交界面 | 无滑移边界 | u=v=w=0 |
微通道上/下壁面 | 恒定热流密度边界 | q=120kW/m2;δ=2mm |
序号 | 网格数目 | 出口温度/K | 出口速度/m·s-1 | 最小单元尺寸/mm |
---|---|---|---|---|
1 | 2044992 | 196.05 | 4.19 | 0.2 |
2 | 2780601 | 189.57 | 3.52 | 0.17 |
3 | 3729528 | 177.78 | 3.05 | 0.15 |
4 | 4224407 | 177.62 | 3.02 | 0.14 |
5 | 5376328 | 177.51 | 3.00 | 0.13 |
表3 不同网格系统下SCN2出口温度和出口速度
序号 | 网格数目 | 出口温度/K | 出口速度/m·s-1 | 最小单元尺寸/mm |
---|---|---|---|---|
1 | 2044992 | 196.05 | 4.19 | 0.2 |
2 | 2780601 | 189.57 | 3.52 | 0.17 |
3 | 3729528 | 177.78 | 3.05 | 0.15 |
4 | 4224407 | 177.62 | 3.02 | 0.14 |
5 | 5376328 | 177.51 | 3.00 | 0.13 |
1 | 袁旭东, 贾磊, 周到, 等. 微通道临界热通量的基础理论与提升技术研究进展[J]. 化工学报, 2021, 72(4): 1796-1814. |
YUAN Xudong, JIA Lei, ZHOU Dao, et al. Research progress on basic theory and improvement technology for critical heat flux of microchannel[J]. CIESC Journal, 2021, 72(4): 1796-1814. | |
2 | DENG Daxiang, ZENG Long, SUN Wei. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
3 | 陆威, 苗冉, 吴志根, 等. 非牛顿流体在波节套管换热器中流动与换热的实验研究[J]. 化工学报, 2022, 73(7): 2924-2932. |
LU Wei, MIAO Ran, WU Zhigen, et al. Experimental study on flow and heat transfer of non-Newtonian fluid in a corrugated double-tube heat exchanger[J]. CIESC Journal, 2022, 73(7): 2924-2932. | |
4 | 谷家扬, 魏世松, 景宝金, 等. 紧凑高效微通道换热器流动与换热特性研究进展[J]. 江苏科技大学学报(自然科学版), 2020, 34(6): 42-49. |
GU Jiayang, WEI Shisong, JING Baojin, et al. Progress in the research of flow and heat transfer characteristics of printed circuit heat exchangers[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2020, 34(6): 42-49. | |
5 | ZHOU Jinzhi, CAO Xiaoling, ZHANG Nan, et al. Micro-channel heat sink: A review[J]. Journal of Thermal Science, 2020, 29(6): 1431-1462. |
6 | 雷丽, 李慧玲, 赵玉婷, 等. 凹穴型微通道液-液两相流动特性[J]. 高校化学工程学报, 2020, 34(6): 1360-1367. |
LEI Li, LI Huiling, ZHAO Yuting, et al. Characteristics of liquid-liquid two-phase flow in microchannels with reentrant cavities[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(6): 1360-1367. | |
7 | 李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901. |
LI Yifan, WANG Zhipeng. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. | |
8 | ZHAO Zhongchao, ZHANG Yong, CHEN Xudong, et al. Experimental and numerical investigation of thermal-hydraulic performance of supercritical nitrogen in airfoil fin printed circuit heat exchanger[J]. Applied Thermal Engineering, 2020, 168: 114829. |
9 | CHENG He, YIN Liang, JU Yonglin, et al. Experimental investigation on heat transfer characteristics of supercritical nitrogen in a heated vertical tube[J]. International Journal of Thermal Sciences, 2020, 152: 106327. |
10 | 韩昌亮, 辛镜青, 于广滨, 等. 微通道内超临界氮气三维热流场实验与数值模拟[J]. 化工学报, 2022, 73(2): 653-662. |
HAN Changliang, XIN Jingqing, YU Guangbin, et al. Experimental and numerical simulation on three-dimensional heat flow field of supercritical nitrogen in micro-channel[J]. CIESC Journal, 2022, 73(2): 653-662. | |
11 | LASHKARBOLOKI Mostafa, VAEZIAN Ahmad, HEZAVE Ali Zeinolabedini, et al. Experimental investigation of the influence of supercritical carbon dioxide and supercritical nitrogen injection on tertiary live-oil recovery[J]. The Journal of Supercritical Fluids, 2016, 117: 260-269. |
12 | YU Qinghua, PENG Yuxiang, NEGOESCU Ciprian Constantin, et al. Study on convective heat transfer of supercritical nitrogen in a vertical tube for liquid air energy storage[J]. Energies, 2021, 14(22): 7773. |
13 | DONDAPATI Raja Sekhar. Role of Supercritical Nitrogen (SCN) on the hydraulic and thermal characteristics of futuristic High Temperature Superconducting (HTS) cables[J]. Cryogenics, 2020, 111: 103166. |
14 | CONG Tenglong, WANG Zhenhong, ZHANG Rui, et al. Thermal-hydraulic performance of a PCHE with sodium and sCO2 as working fluids[J]. Annals of Nuclear Energy, 2021, 157: 108210. |
15 | KUROSE Kizuku, WATANABE Naoto, MIYATA Kazushi, et al. Numerical simulation of flow and cooling heat transfer of supercritical pressure refrigerants in chevron-type plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121758. |
16 | 白书诚, 吴俐俊, 田梦雨. 波纹板式换热器传热与流动特性分析[J]. 热能动力工程, 2022, 37(6): 114-121. |
BAI Shucheng, WU Lijun, TIAN Mengyu. Analysis of heat transfer and flow characteristics of corrugated plate heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(6): 114-121. | |
17 | 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209. |
XIE Yao, LI Jianrui, HU Haitao. Simulation of supercritical methane flow and heat transfer characteristics in printed circuit heat exchanger[J]. CIESC Journal, 2021, 72(S1): 203-209. | |
18 | XU Minghai, LU Hui, GONG Liang, et al. Parametric numerical study of the flow and heat transfer in microchannel with dimples[J]. International Communications in Heat and Mass Transfer, 2016, 76: 348-357. |
19 | QU Weilin, MALA Gh Mohiuddin, LI Dongqing. Heat transfer for water flow in trapezoidal silicon microchannels[J]. International Journal of Heat and Mass Transfer, 2000, 43(21): 3925-3936. |
20 | CHAI Lei, XIA Guodong, WANG Huasheng. Laminar flow and heat transfer characteristics of interrupted microchannel heat sink with ribs in the transverse microchambers[J]. International Journal of Thermal Sciences, 2016, 110: 1-11. |
21 | 孙文骏. 两种新型微通道散热器结构优化及传热特性的数值研究[D]. 桂林: 桂林理工大学, 2021. |
SUN Wenjun. Numerical study on structural optimization and heat transfer characteristic of two new microchannel heat sinks[D]. Guilin: Guilin university of technology, 2021. | |
22 | 吴秋瑜. 凹穴型微通道换热器结构设计与性能研究[D]. 广州: 华南理工大学, 2017. |
WU Qiuyu. Performance study and structure design of microchannel heat exchanger with fan-shaped cavities[D]. Guangzhou: South China University of Technology, 2017. | |
23 | 高博, 焦永刚, 田玉思, 等. 截面积尺寸对微通道换热器流动特性的影响机理[J]. 石家庄铁道大学学报 (自然科学版), 2021, 34(3): 81-86. |
GAO Bo, JIAO Yonggang, TIAN Yusi, et al. Influence mechanism of cross section size on flow characteristics of microchannel heat exchanger[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2021, 34(3): 81-86. | |
24 | 陈涛, 王桂莲, 吴永进, 等. 交错内肋微通道的流动和传热特性研究[J]. 热能动力工程, 2022, 37(9): 128-135. |
CHEN Tao, WANG Guilian, WU Yongjin, et al. Study on flow and heat transfer characteristics of microchannels with staggered internal ribs[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 128-135. | |
25 | 陈一航, 张引弟, 黄纪琛, 等. 双锥型凹穴微通道超临界CO2流动传热特性研究[J]. 低温工程, 2022 (4): 6-13. |
CHEN Yihang, ZHANG Yindi, HUANG Jichen, et al. Study on heat transfer characteristics of supercritical CO2 flow in double-cone-shaped cavity microchannels[J]. Cryogenics, 2022(4): 6-13. | |
26 | LEMMON Eric W, MCLINDEN Mark O, HUBER Marcia L. NIST standard reference database 23: NIST thermodynamics and transport properties REFPROP, Version 7.0 [S]. 2002. |
27 | HAN Changliang, REN Jingjie, WANG Yanqing, et al. Experimental studies of shell-side fluid flow and heat transfer characteristics in a submerged combustion vaporizer[J]. International Journal of Heat and Mass Transfer, 2016, 101: 436-444. |
28 | HAN Changliang, REN Jingjie, WANG Yanqing, et al. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer[J]. Applied Thermal Engineering, 2017, 113: 529-536. |
29 | KLINE S J, MCCLINTOCK F A. Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75: 3-8. |
[1] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[6] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[7] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[8] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[9] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[10] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[11] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[12] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[13] | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
[14] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[15] | 袁守正, 陈啸, 蒋鸣, 余亚雄, 周强. 气固下行床中壁面对介尺度曳力的影响规律[J]. 化工进展, 2023, 42(5): 2272-2281. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 684
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |