化工进展 ›› 2022, Vol. 41 ›› Issue (10): 5425-5440.DOI: 10.16085/j.issn.1000-6613.2021-2538
收稿日期:
2021-12-13
修回日期:
2022-02-07
出版日期:
2022-10-20
发布日期:
2022-10-21
通讯作者:
马志
作者简介:
崔崑(1981—),男,博士,高级工程师,研究方向为聚合物材料结构性能分析表征、流变学及加工。E-mail:cuikun@sioc.ac.cn。
CUI Kun(), HUANG Jin, ZHAO Qiaoling, MA Zhi()
Received:
2021-12-13
Revised:
2022-02-07
Online:
2022-10-20
Published:
2022-10-21
Contact:
MA Zhi
摘要:
高熔体强度聚丙烯(high melt strength polypropylene,HMSPP)是具有较高熔体强度和弹性、在熔融拉伸时存在应变硬化现象的一种新型聚丙烯材料。近年来,对长支链(LCB)型HMSPP(LCB-HMSPP)的研发引起了学术界和工业界的广泛关注。在利用各种方法和工艺制备LCB-HMSPP之后,所得聚合物是否具有长支链结构,长支链的化学组成、密度及链长度等拓扑结构信息,都需要通过各种仪器分析与表征方法对其进行定性或定量验证。本文着重对傅里叶变换红外光谱(FTIR)法、核磁共振碳谱(13C NMR)法、凝胶渗透色谱(GPC)及其联用方法、流变学表征法和结晶行为表征法在LCB-HMSPP中LCB链结构分析与表征中的研究新进展进行总结和评述,介绍了这些方法各自的优缺点和适用性并对这些方法进行了对比,最后对用于LCB-HMSPP中LCB链结构的分析与表征方法研究的未来发展及应用前景进行了展望。
中图分类号:
崔崑, 黄晋, 赵巧玲, 马志. 高熔体强度聚丙烯中长支链结构的分析与表征方法新进展[J]. 化工进展, 2022, 41(10): 5425-5440.
CUI Kun, HUANG Jin, ZHAO Qiaoling, MA Zhi. New progress in analysis and characterization of long chain branched structure in high melt strength polypropylene[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5425-5440.
对比内容 | FTIR | 13C NMR | GPC(SEC)及联用方法 | 流变学表征法 | 结晶行为表征法 |
---|---|---|---|---|---|
支化链结构的形成 | 定性判定 | 定性判定 | 定性判定 | 定性判定 | 定性判定 |
支化链数目及分布 | 定量分析 (支化点附近或支链链端要具有特征官能团) | 定量分析 (不适用于低含量 LCB样品) | 定量分析 (不适用于低含量LCB样品) | 定量分析 (适用于低含量LCB样品) | 定性判定 |
支化链长度 | 无法判定 | 可以判定 (限于碳数≤16的支化链) 不适用于后反应器法或交联法制备的样品 | 可以判定 (大分子单体/反应物作为支化链) | 无法判定 | 无法判定 |
无法判定 (后反应器法体系/交联法体系) | |||||
样品用量① | 约10mg(KBr压片法) 50~100mg(薄膜法) | 20~50mg(液体) 约200mg(固体/熔体) | 10~20mg | 20~50mg | 5~15mg |
测试条件① | 常温、干燥 | 110~120℃(液体); 150~180℃(固体/熔体) | 150℃ | 210~230℃ | 室温~200℃ (多个升降温程序) |
测试周期① | 约5min | 约16h(液体); 约8h(固体/熔体) | 约2h | 约2h | 0.5h(结晶温度) 5h(结晶动力学) |
表1 各种用于LCB-HMSPP中LCB链结构分析与表征方法的特点对比
对比内容 | FTIR | 13C NMR | GPC(SEC)及联用方法 | 流变学表征法 | 结晶行为表征法 |
---|---|---|---|---|---|
支化链结构的形成 | 定性判定 | 定性判定 | 定性判定 | 定性判定 | 定性判定 |
支化链数目及分布 | 定量分析 (支化点附近或支链链端要具有特征官能团) | 定量分析 (不适用于低含量 LCB样品) | 定量分析 (不适用于低含量LCB样品) | 定量分析 (适用于低含量LCB样品) | 定性判定 |
支化链长度 | 无法判定 | 可以判定 (限于碳数≤16的支化链) 不适用于后反应器法或交联法制备的样品 | 可以判定 (大分子单体/反应物作为支化链) | 无法判定 | 无法判定 |
无法判定 (后反应器法体系/交联法体系) | |||||
样品用量① | 约10mg(KBr压片法) 50~100mg(薄膜法) | 20~50mg(液体) 约200mg(固体/熔体) | 10~20mg | 20~50mg | 5~15mg |
测试条件① | 常温、干燥 | 110~120℃(液体); 150~180℃(固体/熔体) | 150℃ | 210~230℃ | 室温~200℃ (多个升降温程序) |
测试周期① | 约5min | 约16h(液体); 约8h(固体/熔体) | 约2h | 约2h | 0.5h(结晶温度) 5h(结晶动力学) |
1 | 吕玉杰, 乔金梁, 吕立新. 高熔体强度聚丙烯的研究开发进展[J]. 合成树脂及塑料, 2000, 17(4): 30-32, 39. |
Yujie LYU, QIAO Jinliang, Lixin LYU. Development of high melt strength polypropylene[J]. China Synthetic Resin and Plastics, 2000, 17(4): 30-32, 39. | |
2 | 黄成. 高熔体强度聚丙烯研究进展[J]. 现代塑料加工应用, 2001, 13(5): 38-41. |
HUANG Cheng. Research advances in high melt strength polypropylene[J]. Modern Plastics Processing and Applications, 2001, 13(5): 38-41. | |
3 | 谭小华, 陈贤益, 王庭慰. 高熔体强度聚丙烯的研究进展[J]. 中国塑料, 2002, 16(7): 12-16. |
TAN Xiaohua, CHEN Xianyi, WANG Tingwei. Research development of high-melt-strength polypropylene research[J]. China Plastics, 2002, 16(7): 12-16. | |
4 | 贾军纪, 陆青乡, 陈雪蓉, 等. 长链支化高熔体强度聚丙烯研究综述[J]. 石油化工应用, 2006, 25(6): 4-8. |
JIA Junji, LU Qingxiang, CHEN Xuerong, et al. Research on long chain branched high melt strength polypropylene[J]. Petrochemical Industry Application, 2006, 25(6): 4-8. | |
5 | 石金永, 闫卫东. 高熔体强度聚丙烯的制备与应用进展[J]. 高分子材料科学与工程, 2007, 23(1): 28-31, 36. |
SHI Jinyong, YAN Weidong. Advances in the preparation and application of high melt strength polypropylene[J]. Polymer Materials Science & Engineering, 2007, 23(1): 28-31, 36. | |
6 | 王红英, 胡徐腾, 李振宇, 等. 高熔体强度聚丙烯的制备与表征[J]. 化学进展, 2007, 19(6): 932-958. |
WANG Hongying, HU Xuteng, LI Zhenyu, et al. Preparation and characterization of high melt strength polypropylene[J]. Progress in Chemistry, 2007, 19(6): 932-958. | |
7 | 曹祥薇, 冯凯, 郭正波, 等. 长支链聚丙烯的制备及应用[J]. 塑料助剂, 2010(6): 15-19. |
CAO Xiangwei, FENG Kai, GUO Zhengbo, et al. Preparation and application of long branched chain polypropylene[J]. Plastics Additives, 2010(6): 15-19. | |
8 | 郭鹏, 吕明福, 张师军. 高熔体强度聚丙烯的研究现状与评述[J]. 化工进展, 2012, 31(S2): 158-162. |
GUO Peng, Mingfu LYU, ZHANG Shijun. Research progress in high melt strength polypropylene[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 158-162. | |
9 | 郭鹏, 刘有鹏, 吕明福, 等. 高熔体强度聚丙烯的研究进展[J]. 石油化工, 2012, 41(8): 958-964. |
GUO Peng, LIU Youpeng, Mingfu LYU, et al. Research progresses in high melt strength polypropylene[J]. Petrochemical Technology, 2012, 41(8): 958-964. | |
10 | 姜慧婧, 蔡力宏, 袁炜. 高熔体强度聚丙烯的研究进展[J]. 广东化工, 2012, 39(12): 26-27. |
JIANG Huijing, CAI Lihong, YUAN Wei. Researching status of high melt strength polypropylene[J]. Guangdong Chemical Industry, 2012, 39(12): 26-27. | |
11 | 王占军, 刘晨光, 贺爱华. 高熔体强度聚丙烯制备的研究进展[J]. 塑料工业, 2014, 42(8): 1-6. |
WANG Zhanjun, LIU Chenguang, HE Aihua. Research advances in preparation of high melt strength polypropylene[J]. China Plastics Industry, 2014, 42(8): 1-6. | |
12 | 顾学峰. 高熔体强度聚丙烯的制备方法与工业化进展[J]. 现代塑料加工应用, 2014, 26(6): 23-26. |
GU Xuefeng. Preparing methods and commercialization progress of high melt strength polypropylene[J]. Modern Plastics Processing and Applications, 2014, 26(6): 23-26. | |
13 | 王文丰. 高熔体强度聚丙烯制备技术的研究进展[J]. 石油化工, 2015, 44(10): 1262-1270. |
WANG Wenfeng. Progresses in production technology of high melt strength polypropylene[J]. Petrochemical Technology, 2015, 44(10): 1262-1270. | |
14 | 崔玉龙, 马竞夫. 高熔体强度聚丙烯的性能及其制备工艺研究进展[J]. 合成树脂及塑料, 2016, 33(3): 67-70. |
CUI Yulong, MA Jingfu. Properties and preparation process of high melt strength polypropylene[J]. China Synthetic Resin and Plastics, 2016, 33(3): 67-70. | |
15 | 胡圣飞, 黄轲, 张荣, 等. 辐照法制备高熔体强度聚丙烯的研究进展[J]. 高分子材料科学与工程, 2017, 33(3): 180-185. |
HU Shengfei, HUANG Ke, ZHANG Rong, et al. Progress in production of high melt strength polypropylene by irradiation[J]. Polymer Materials Science & Engineering, 2017, 33(3): 180-185. | |
16 | 孟鸿诚, 郭鹏, 吕明福, 等. 高熔体强度聚丙烯的应用及市场分析[J]. 石油化工, 2018, 47(8): 896-900. |
MENG Hongcheng, GUO Peng, Mingfu LYU, et al. Application and marketing analysis of high melt strength polypropylene[J]. Petrochemical Technology, 2018, 47(8): 896-900. | |
17 | 佟旭. 高熔体强度聚丙烯的开发及应用市场观察[J]. 石化技术, 2019, 26(5): 1-3. |
TONG Xu. Development and marketing investigation of high melt strength polypropylene[J]. Petrochemical Industry Technology, 2019, 26(5): 1-3. | |
18 | JANZEN J, COLBY R H. Diagnosing long-chain branching in polyethylenes[J]. Journal of Molecular Structure, 1999, 485/486: 569-583. |
19 | VITTORIAS I, PARKINSON M, KLIMKE K, et al. Detection and quantification of industrial polyethylene branching topologies via Fourier-transform rheology, NMR and simulation using the Pom-Pom model[J]. Rheologica Acta, 2007, 46(3): 321-340. |
20 | GELL C B, GRAESSLEY W W, EFSTRATIADIS V, et al. Viscoelasticity and self-diffusion in melts of entangled asymmetric star polymers[J]. Journal of Polymer Science Part B: Polymer Physics, 1997, 35(12): 1943-1954. |
21 | GOTSIS A D, ZEEVENHOVEN B L F, TSENOGLOU C. Effect of long branches on the rheology of polypropylene[J]. Journal of Rheology, 2004, 48(4): 895-914. |
22 | HARRELL E R, NAKAJIMA N. Modified Cole-Cole plot based on viscoelastic properties for characterizing molecular architecture of elastomers[J]. Journal of Applied Polymer Science, 1984, 29(3): 995-1010. |
23 | HINGMANN R, MARCZINKE B L. Shear and elongational flow properties of polypropylene melts[J]. Journal of Rheology, 1994, 38(3): 573-587. |
24 | KURZBECK S, OSTER F, MÜNSTEDT H, et al. Rheological properties of two polypropylenes with different molecular structure[J]. Journal of Rheology, 1999, 43(2): 359-374. |
25 | WAGNER M H, BASTIAN H, HACHMANN P, et al. The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows[J]. Rheologica Acta, 2000, 39(2): 97-109. |
26 | LAGENDIJK R P, HOGT A H, BUIJTENHUIJS A, et al. Peroxydicarbonate modification of polypropylene and extensional flow properties[J]. Polymer, 2001, 42(25): 10035-10043. |
27 | WENG Weiqing, MARKEL E J, DEKMEZIAN A H. Synthesis of long-chain branched propylene polymers via macromonomer incorporation[J]. Macromolecular Rapid Communications, 2001, 22(18): 1488-1492. |
28 | GABRIEL C, MÜNSTEDT H. Strain hardening of various polyolefins in uniaxial elongational flow[J]. Journal of Rheology, 2003, 47(3): 619-630. |
29 | 汪永斌, 杨锐, 张丽叶. 长支链型高熔体强度聚丙烯流变性能的研究——剪切流变[J]. 中国塑料, 2006, 20(5): 67-72. |
WANG Yongbin, YANG Rui, ZHANG Liye. Rheological behavior of high-melt-strength polypropylene with long-chain-branching structure-shear rheology[J]. China Plastics, 2006, 20(5): 67-72. | |
30 | KOLODKA E, WANG W J, ZHU S P, et al. Copolymerization of propylene with poly(ethylene-co-propylene) macromonomer and branch chain-length dependence of rheological properties[J]. Macromolecules, 2002, 35(27): 10062-10070. |
31 | LIU Chunsheng, WEI Dafu, ZHENG Anna, et al. Improving foamability of polypropylene by grafting modification[J]. Journal of Applied Polymer Science, 2006, 101(6): 4114-4123. |
32 | TANG Hongxia, DAI Wenli, CHEN Baiquan. A new method for producing high melt strength polypropylene with reactive extrusion[J]. Polymer Engineering & Science, 2008, 48(7): 1339-1344. |
33 | SU Fenghua, HUANG Hanxiong. Rheology and thermal behavior of long branching polypropylene prepared by reactive extrusion[J]. Journal of Applied Polymer Science, 2009, 113(4): 2126-2135. |
34 | SU Fenghua, HUANG Hanxiong. Rheology and thermal properties of polypropylene modified by reactive extrusion with dicumyl peroxide and trimethylol propane triacrylate[J]. Advances in Polymer Technology, 2009, 28(1): 16-25. |
35 | LI Shuzhao, XIAO Miaomiao, WEI Dafu, et al. The melt grafting preparation and rheological characterization of long chain branching polypropylene[J]. Polymer, 2009, 50(25): 6121-6128. |
36 | CAO Kun, LI Yan, LU Zhanquan, et al. Preparation and characterization of high melt strength polypropylene with long chain branched structure by the reactive extrusion process[J]. Journal of Applied Polymer Science, 2011, 121(6): 3384-3392. |
37 | 张振江, 万东, 邢海平, 等. 二硫化四甲基秋兰姆在热引发熔融接枝聚丙烯体系中的调控作用[J]. 应用化学, 2011, 28(10): 1130-1134. |
ZHANG Zhenjiang, WAN Dong, XING Haiping, et al. The effect of tetramethylthiuram disulfide on the heat-induction melt-grafting of polypropylene[J]. Chinese Journal of Applied Chemistry, 2011, 28(10): 1130-1134. | |
38 | WENG W Q, HU W G, DEKMEZIAN A H, et al. Long chain branched isotactic polypropylene[J]. Macromolecules, 2002, 35(10): 3838-3843. |
39 | YE Z B, ALOBAIDI F, ZHU S P. Synthesis and rheological properties of long-chain-branched isotactic polypropylenes prepared by copolymerization of propylene and nonconjugated dienes[J]. Industrial & Engineering Chemistry Research, 2004, 43(11): 2860-2870. |
40 | WOOD-ADAMS P M, DEALY J M, DEGROOT A W, et al. Effect of molecular structure on the linear viscoelastic behavior of polyethylene[J]. Macromolecules, 2000, 33(20): 7489-7499. |
41 | SHROFF R N, MAVRIDIS H. Assessment of NMR and rheology for the characterization of LCB in essentially linear polyethylenes[J]. Macromolecules, 2001, 34(21): 7362-7367. |
42 | PARKINSON M, KLIMKE K, SPIESS H W, et al. Effect of branch length on 13C NMR relaxation properties in molten poly[ethylene-co-(α-olefin)] model systems[J]. Macromolecular Chemistry and Physics, 2007, 208(19/20): 2128-2133. |
43 | HE C X, COSTEUX S, WOOD-ADAMS P, et al. Molecular structure of high melt strength polypropylene and its application to polymer design[J]. Polymer, 2003, 44(23): 7181-7188. |
44 | ZIMM B H, STOCKMAYER W H. The dimensions of chain molecules containing branches and rings[J]. The Journal of Chemical Physics, 1949, 17(12): 1301-1314. |
45 | SUGIMOTO M, TANAKA T, MASUBUCHI Y, et al. Effect of chain structure on the melt rheology of modified polypropylene[J]. Journal of Applied Polymer Science, 1999, 73(8): 1493-1500. |
46 | AUHL D, STANGE J, MÜNSTEDT H, et al. Long-chain branched polypropylenes by electron beam irradiation and their rheological properties[J]. Macromolecules, 2004, 37(25): 9465-9472. |
47 | ZHANG Zhenjiang, WAN Dong, AN Yanjie, et al. Controlling the evolution of polypropylene microstructure during melt free radical modification using zinc dithiocarbamate with different N-substituted groups[J]. Polymer Degradation and Stability, 2011, 96(4): 653-659. |
48 | ZHANG Zhenjiang, WAN Dong, XING Haiping, et al. A new grafting monomer for synthesizing long chain branched polypropylene through melt radical reaction[J]. Polymer, 2012, 53(1): 121-129. |
49 | GUAPACHA J, FAILLA M D, VALLÉS E M, et al. Molecular, rheological, and thermal study of long-chain branched polypropylene obtained by esterification of anhydride grafted polypropylene[J]. Journal of Applied Polymer Science, 2014, 131(12): 40357. |
50 | ZHAO Wangyang, HUANG Yajiang, LIAO Xia, et al. The molecular structure characteristics of long chain branched polypropylene and its effects on non-isothermal crystallization and mechanical properties[J]. Polymer, 2013, 54(4): 1455-1462. |
51 | CANGUSSÚ M E, DE AZEREDO A P, SIMANKE A G, et al. Characterizing long chain branching in polypropylene[J]. Macromolecular Symposia, 2018, 377(1): 1700021. |
52 | ZHANG Chun, YANG Le, HE Li, et al. Influence of different functionality degree grafting monomers on polypropylene melt radical branching reaction and their structure[J]. Polymers for Advanced Technologies, 2018, 29(1): 551-559. |
53 | YANG Le, JIANG Tuanhui, GONG Wei, et al. Influence of polypropylene topological structure evolution during melt branching reactive processing on its melt performances[J]. Polymers for Advanced Technologies, 2018, 29(8): 2300-2307. |
54 | AUHL D, STADLER F J, MÜNSTEDT H. Comparison of molecular structure and rheological properties of electron-beam- and gamma-irradiated polypropylene[J]. Macromolecules, 2012, 45(4): 2057-2065. |
55 | GUAPACHA J, VALLÉS E M, FAILLA M D, et al. Efficiency of different chain-linking agents in the synthesis of long-chain branched polypropylene: molecular, thermal, and rheological characterization[J]. Polymer-Plastics Technology and Engineering, 2018, 57(12): 1209-1224. |
56 | 杜斌, 周京生, 王宇杰, 等. 聚丙烯长链支化结构的流变学研究[J]. 合成树脂及塑料, 2018, 35(6): 66-70. |
DU Bin, ZHOU Jingsheng, WANG Yujie, et al. Rheological behavior of LCBPP[J]. China Synthetic Resin and Plastics, 2018, 35(6): 66-70. | |
57 | GUAPACHA J, VALLÉS E M, QUINZANI L M, et al. Long-chain branched polypropylene obtained using an epoxy resin as crosslinking agent[J]. Polymer Bulletin, 2017, 74(6): 2297-2318. |
58 | GHIJSELS A, DE CLIPPELEIR J. Melt strength behaviour of polypropylenes[J]. International Polymer Processing, 1994, 9(3): 252-257. |
59 | GHIJSELS A, MASSARDIER C H C, BRADLEY R M. Brittle melt rupture phenomena in polymer processing[J]. International Polymer Processing, 1997, 12(2): 147-154. |
60 | TSENOGLOU C J, GOTSIS A D. Rheological characterization of long chain branching in a melt of evolving molecular architecture[J]. Macromolecules, 2001, 34(14): 4685-4687. |
61 | MUKE S, IVANOV I, KAO N, et al. Extensional rheology of polypropylene melts from the rheotens test[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 101(1/2/3): 77-93. |
62 | WAGNER M H, BASTIAN H, BERNNAT A, et al. Determination of elongational viscosity of polymer melts by RME and Rheotens experiments[J]. Rheologica Acta, 2002, 41(4): 316-325. |
63 | 汪永斌, 张丽叶. 辐照改性聚丙烯拉伸流变行为及其挤出发泡的研究[J]. 中国塑料, 2005, 19(8): 32-35. |
WANG Yongbin, ZHANG Liye. Extensional rheological behavior of irradiated polypropylene and its application in extrusion foaming[J]. China Plastics, 2005, 19(8): 32-35. | |
64 | TIAN Jinghua, YU Wei, ZHOU Chixing. The preparation and rheology characterization of long chain branching polypropylene[J]. Polymer, 2006, 47(23): 7962-7969. |
65 | 宋玉国. 长链支化聚丙烯的制备及其熔体流变性能的研究[J]. 工程塑料应用, 2009, 37(9): 36-40. |
SONG Yuguo. Preparation and melt rheological properties of long chain branched polypropylene by reactive extrusion[J]. Engineering Plastics Application, 2009, 37(9): 36-40. | |
66 | 苏峰华, 黄汉雄, 邹余敏. 长链支化聚丙烯的反应挤出制备及其流变和热力学性能研究[J]. 中国塑料, 2009, 23(8): 31-34. |
SU Fenghua, HUANG Hanxiong, ZOU Yumin. Rheological behavior and thermal properties of long chain branching polypropylene prepared by reactive extrusion[J]. China Plastics, 2009, 23(8): 31-34. | |
67 | 师建军, 秦亚伟, 牛慧, 等. 一种用Ziegler-Natta催化剂直接合成支化型高熔体强度聚丙烯的新策略[J]. 石油化工, 2014, 43(6): 618-624. |
SHI Jianjun, QIN Yawei, NIU Hui, et al. A new strategy to prepare high-melt-strength polypropylene with branched structure using Ziegler-Natta catalyst[J]. Petrochemical Technology, 2014, 43(6): 618-624. | |
68 | 杨黎黎, 郑慧琴. 长链支化聚丙烯的流变性能研究[J]. 合成材料老化与应用, 2014, 43(2): 41-44. |
YANG Lili, ZHENG Huiqin. Research on rheology properties of long chain branched polypropylene[J]. Synthetic Materials Aging and Application, 2014, 43(2): 41-44. | |
69 | CAO Jing, WEN Na, ZHENG Yuying. Effect of long chain branching on the rheological behavior, crystallization and mechanical properties of polypropylene random copolymer[J]. Chinese Journal of Polymer Science, 2016, 34(9): 1158-1171. |
70 | ZHOU Shuai, WANG Weixia, ZHAO Shicheng, et al. Shear-induced β-form polypropylene in long chain branching isotactic polypropylene[J]. Polymer Engineering & Science, 2016, 56(2): 240-247. |
71 | STANIC S, GOTTLIEB G, KOCH T, et al. Influence of different types of peroxides on the long-chain branching of PP via reactive extrusion[J]. Polymers, 2020, 12(4): 886. |
72 | GRAEBLING D. Synthesis of branched polypropylene by a reactive extrusion process[J]. Macromolecules, 2002, 35(12): 4602-4610. |
73 | TIAN Jinghua, YU Wei, ZHOU Chixing. Crystallization kinetics of linear and long-chain branched polypropylene[J]. Journal of Macromolecular Science, Part B, 2006, 45(5): 969-985. |
74 | TIAN Jinghua, YU Wei, ZHOU Chixing. Crystallization behaviors of linear and long chain branched polypropylene[J]. Journal of Applied Polymer Science, 2007, 104(6): 3592-3600. |
75 | 曾伟, 刘继纯, 周俊峰, 等. 长链支化聚丙烯和线性聚丙烯熔体结晶动力学的对比研究[J]. 科学通报, 2007, 52(19): 2246-2254. |
ZENG Wei, LIU Jichun, ZHOU Junfeng, et al. Comparative study on melt crystallization kinetics of long chain branched polypropylene and linear polypropylene [J]. Chinese Science Bulletin, 2007, 52(19): 2246-2254. | |
76 | WANG Lu, WAN Dong, QIU Jian, et al. Effects of long chain branches on the crystallization and foaming behaviors of polypropylene-g-poly(ethylene-co-1-butene) graft copolymers with well-defined molecular structures[J]. Polymer, 2012, 53(21): 4737-4757. |
77 | ZHOU Shuai, WANG Weixia, XIN Zhong, et al. Relationship between molecular structure, crystallization behavior, and mechanical properties of long chain branching polypropylene[J]. Journal of Materials Science, 2016, 51(12): 5598-5608. |
78 | LIU Tianxi, MO Zhishen, WANG Shanger, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone)[J]. Polymer Engineering & Science, 1997, 37(3): 568-575. |
79 | WENG Wengui, CHEN Guohua, WU Dajun. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites[J]. Polymer, 2003, 44(26): 8119-8132. |
80 | OZAWA T. Kinetics of non-isothermal crystallization[J]. Polymer, 1971, 12(3): 150-158. |
81 | JIAO Chuanmei, WANG Zhengzhou, LIANG Xiaoming, et al. Non-isothermal crystallization kinetics of silane crosslinked polyethylene[J]. Polymer Testing, 2005, 24(1): 71-80. |
82 | 张振江, 唐涛, 祝丽荔, 等. 长链支化聚丙烯结晶行为及发泡性能研究[J]. 高分子学报, 2016(4): 457-463. |
ZHANG Zhenjiang, TANG Tao, ZHU Lili, et al. The investigation on crystallization behavior and foamability of long chain branched polypropylene[J]. Acta Polymerica Sinica, 2016(4): 457-463. |
[1] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[2] | 赵健, 卓泽文, 董航, 高文健. 含蜡原油及其乳状液体系微观结构观测的新方法[J]. 化工进展, 2023, 42(8): 4372-4384. |
[3] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
[4] | 孙征楠, 李洪晶, 荆国林, 张福宁, 颜飚, 刘晓燕. EVA及其改性聚合物在原油降凝剂领域的应用[J]. 化工进展, 2023, 42(6): 2987-2998. |
[5] | 吴霞, 蒋勋涛, 张余晓, 吕慧园, 黄方, 于筱溪. 基于液滴微流控技术的蛋白质结晶[J]. 化工进展, 2023, 42(4): 2024-2030. |
[6] | 齐亚兵, 贾宏磊. 熔融结晶技术分离纯化有机化合物的研究进展[J]. 化工进展, 2023, 42(1): 373-385. |
[7] | 范嘉昊, 张洋, 范兵强, 张贺东, 郑诗礼, 邹兴. (NH4)2SO4和Na2SO4混合溶液中(NH4)2SO4结晶动力学及铁/铝/锰/铬等离子对(NH4)2SO4结晶的影响规律[J]. 化工进展, 2023, 42(1): 488-496. |
[8] | 常耀萍, 官修帅, 郑谦, 靳山彪, 张长明, 张小超. 水热法制备3D花球状Bi2SiO5及其光催化油酸酯化反应[J]. 化工进展, 2022, 41(8): 4181-4191. |
[9] | 姜华, 张子惠, 宫武旗, 常越勇. MVR分质提盐蒸发结晶系统设计及性能分析[J]. 化工进展, 2022, 41(7): 3947-3956. |
[10] | 陆少锋, 崔杉杉, 师文钊, 李苏松, 谢艳, 杨乾诚. 交联水性聚氨酯固-固相变材料的制备及性能[J]. 化工进展, 2022, 41(5): 2574-2581. |
[11] | 苏晴, 颜薇, 唐沂珍, 刘迪, 江波. 电化学-微滤耦合工艺对循环水钙硬度的结晶分离[J]. 化工进展, 2022, 41(2): 1036-1042. |
[12] | 邵冠瑛, 贺高红, 姜晓滨. 膜辅助添加晶种的过硫酸铵冷却结晶在线监测与过程调控[J]. 化工进展, 2022, 41(12): 6226-6234. |
[13] | 朱坚, 尚小愉, 王滢, 张先明, 陈文兴. 螺环二醇改性PET共聚酯的合成及性能[J]. 化工进展, 2022, 41(11): 6003-6010. |
[14] | 封江辉, 胡苗苗, 赵佳琪, 熊祥宇, 郭锦棠. 高分散性丁苯胶乳的制备及其对水泥的改性[J]. 化工进展, 2022, 41(1): 359-364. |
[15] | 杨晓芳, 魏铭, 孙力. 聚丙烯酰胺/碳量子点/氧化石墨烯复合水凝胶制备及其性能分析[J]. 化工进展, 2021, 40(S2): 301-308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |