化工进展 ›› 2021, Vol. 40 ›› Issue (12): 6818-6828.DOI: 10.16085/j.issn.1000-6613.2021-0096
刘树根1(), 孔馨1(), 吕学斌2,3, 刘庆岭3, 陈冠益3
收稿日期:
2021-01-15
修回日期:
2021-02-15
出版日期:
2021-12-05
发布日期:
2021-12-21
通讯作者:
孔馨
作者简介:
刘树根(1975—),男,博士,教授,研究方向为废物资源化、环境生物技术。E-mail:基金资助:
LIU Shugen1(), KONG Xin1(), LYU Xuebin2,3, LIU Qingling3, CHEN Guanyi3
Received:
2021-01-15
Revised:
2021-02-15
Online:
2021-12-05
Published:
2021-12-21
Contact:
KONG Xin
摘要:
有机固废产生量增长甚为迅速,其处理处置备受关注。采用好氧技术处理有机类固体废物时,堆体在高温条件下有机底物降解较为彻底;但受固体物料组成、代谢中间产物、环境因子等因素影响,反应体系有机底物的分解与代谢会受到不同程度的抑制,进而影响好氧处理效果。本文综述了氨氮、脂肪酸、消化温度等各类因素对有机固废好氧生物处理进程的影响,并基于蛋白酶、氧化酶等活性变化以及代谢产物迁移转化规律,剖析了逆境条件下微生物体内酸碱失衡、蛋白质变性、胞内物质过度氧化三方面主要抑制作用机制,比较了接种功能微生物、添加外源试剂对好氧工艺过程的强化作用效果,同时就有机固废好氧生物处理提质增效的研究方向进行了展望。
中图分类号:
刘树根, 孔馨, 吕学斌, 刘庆岭, 陈冠益. 有机固体废物好氧处理抑制作用研究进展[J]. 化工进展, 2021, 40(12): 6818-6828.
LIU Shugen, KONG Xin, LYU Xuebin, LIU Qingling, CHEN Guanyi. Research progress on the inhibition of aerobic treatment of organic solid wastes[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6818-6828.
有机固废类型 | pH | 水分含量 /% | 总碳(干重) /% | 总氮(干重) /% | C/N | 其他特性 | 参考文献 |
---|---|---|---|---|---|---|---|
餐厨垃圾 | 6.1 | 74.1 | 47.1 | 2.7 | 17.3 | 高含盐量,高油脂,易于腐败变质而发臭 | [ |
新鲜果蔬废料 | 4.9 | 92.3 | 39.3 | 2.4 | 16.4 | 农药、杀虫剂、有机磷和有机氯残留 | [ |
新鲜鸡粪 | — | 75.3 | 28.2 | 2.4 | 11.5 | Cu、Zn类元素含量高,臭味明显 | [ |
抗生素菌渣 | 3.1 | 73.5 | 31.4 | 2.2 | 14.3 | 微生物菌丝体,抗生素大量残留 | [ |
脱水污泥 | 7.5 | 81.0 | 34.0 | 3.4 | 10.0 | 病原体、持久性有机污染物含量高,水分含量高 | [ |
园林垃圾 | 5.2 | 10.0 | 58 | 2.7 | 21.5 | 纤维素含量高,生物降解缓慢 | [ |
表1 典型有机固废的主要特性
有机固废类型 | pH | 水分含量 /% | 总碳(干重) /% | 总氮(干重) /% | C/N | 其他特性 | 参考文献 |
---|---|---|---|---|---|---|---|
餐厨垃圾 | 6.1 | 74.1 | 47.1 | 2.7 | 17.3 | 高含盐量,高油脂,易于腐败变质而发臭 | [ |
新鲜果蔬废料 | 4.9 | 92.3 | 39.3 | 2.4 | 16.4 | 农药、杀虫剂、有机磷和有机氯残留 | [ |
新鲜鸡粪 | — | 75.3 | 28.2 | 2.4 | 11.5 | Cu、Zn类元素含量高,臭味明显 | [ |
抗生素菌渣 | 3.1 | 73.5 | 31.4 | 2.2 | 14.3 | 微生物菌丝体,抗生素大量残留 | [ |
脱水污泥 | 7.5 | 81.0 | 34.0 | 3.4 | 10.0 | 病原体、持久性有机污染物含量高,水分含量高 | [ |
园林垃圾 | 5.2 | 10.0 | 58 | 2.7 | 21.5 | 纤维素含量高,生物降解缓慢 | [ |
有机固废类型 | 干基重金属含量/mg?kg-1 | ||||
---|---|---|---|---|---|
Cd | Pb | Cu | Zn | Cr | |
餐厨垃圾 | 0.016 | 47.6 | 71.6 | 140.4 | 15.3 |
树叶 | 0.027 | 1.8 | 3.9 | 13.6 | 4.1 |
废纸 | 0.014 | 1.3 | 3.4 | 6.5 | 1.5 |
污水厂剩余污泥 | 1.3 | 39.0 | 146.0 | 575 | 49.0 |
禽畜粪便 | 0.15~4.09 | 1.6~36.8 | 12.3~962 | 6.3~1908 | 7.9~85.2 |
塑料、橡胶 | 0.476 | 8.4 | 21.1 | 73.6 | 3.3 |
生物有机肥(NY 884—2012) | <3 | <50 | — | — | <150 |
农用污泥污染物控制标准(GB 4284—2018)① | <15 | <1000 | <1500 | <3000 | <1000 |
表2 不同有机固废中重金属含量[30,33]
有机固废类型 | 干基重金属含量/mg?kg-1 | ||||
---|---|---|---|---|---|
Cd | Pb | Cu | Zn | Cr | |
餐厨垃圾 | 0.016 | 47.6 | 71.6 | 140.4 | 15.3 |
树叶 | 0.027 | 1.8 | 3.9 | 13.6 | 4.1 |
废纸 | 0.014 | 1.3 | 3.4 | 6.5 | 1.5 |
污水厂剩余污泥 | 1.3 | 39.0 | 146.0 | 575 | 49.0 |
禽畜粪便 | 0.15~4.09 | 1.6~36.8 | 12.3~962 | 6.3~1908 | 7.9~85.2 |
塑料、橡胶 | 0.476 | 8.4 | 21.1 | 73.6 | 3.3 |
生物有机肥(NY 884—2012) | <3 | <50 | — | — | <150 |
农用污泥污染物控制标准(GB 4284—2018)① | <15 | <1000 | <1500 | <3000 | <1000 |
55 | GUO R, LI G X, JIANG T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost[J]. Bioresource Technology, 2012, 112: 171-178. |
56 | THOMAS C, IDLER C, AMMON C, et al. Effects of the C/N ratio and moisture content on the survival of ESBL-producing Escherichia coli during chicken manure composting[J]. Waste Management, 2020, 105: 110-118. |
57 | LI X S, MA H Z, WANG Q H, et al. Isolation, identification of sludge-lysing strain and its utilization in thermophilic aerobic digestion for waste activated sludge[J]. Bioresource Technology, 2009, 100(9): 2475-2481. |
58 | 李慧蓉. 白腐真菌生物学和生物技术[M]. 北京: 化学工业出版社, 2005. |
LI Huirong. Biology and biotechnology of white rot fungi[M]. Beijing: Chemical Industry Press, 2005. | |
59 | HOFFMAN M, RAJAPAKSE A, SHEN X, et al. Generation of DNA-damaging reactive oxygen species via the autoxidation of hydrogen sulfide under physiologically relevant conditions: chemistry relevant to both the genotoxic and cell signaling properties of H2S[J]. Chem. Res. Toxicol., 2012, 25(8): 1609-1615. |
60 | FAN Y V, LEE C T, KLEMEŠ J J, et al. Evaluation of effective microorganisms on home scale organic waste composting[J]. Journal of Environmental Management, 2018, 216: 41-48. |
61 | 勇银华, 李贺. 养殖场猪粪超高温好氧堆肥试验研究[J]. 江西化工, 2020(1): 76-77. |
YONG Yinhua, LI He. Experimental study on ultra-high temperature aerobic composting of pig manure[J]. Jiangxi Chemical Industry, 2020(1): 76-77. | |
62 | 肖礼, 黄懿梅, 赵俊峰, 等. 外源菌剂对猪粪堆肥质量及四环素类抗生素降解的影响[J]. 农业环境科学学报, 2016, 35(1): 172-178. |
XIAO Li, HUANG Yimei, ZHAO Junfeng, et al. Effects of exogenous microbial agents on pig manure compost quality and tetracycline antibiotic degradation[J]. Journal of Agro-Environment Science, 2016, 35(1): 172-178. | |
63 | PAN L J, LI J, LI C X, et al. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge[J]. Journal of Hazardous Materials, 2018, 343: 59-67. |
1 | 胡学玉, 李学垣. 有机固体废弃物的堆肥化处理与资源化利用[J]. 农业环境与发展, 2002, 19(2): 20-21. |
HU Xueyu, LI Xueyuan. Composting and resource utilization of solid organic waste[J]. Agro-Environment and Development, 2002, 19(2): 20-21. | |
2 | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2011. |
The National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2011. | |
64 | AWASTHI M K, SELVAM A, LAI K M, et al. Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium[J]. Bioresource Technology, 2017, 245: 665-672. |
65 | SONG C H, ZHANG Y L, XIA X F, et al. Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste[J]. Microbial Biotechnology, 2018, 11(6): 1124-1136. |
66 | AGYARKO-MINTAH E, COWIE A, ZWIETEN L VAN, et al. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting[J]. Waste Management, 2017, 61: 129-137. |
67 | AWASTHI M K, WANG Q, REN X N, et al. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting[J]. Bioresource Technology, 2016, 219: 270-280. |
68 | MAO H, ZHANG T, LI R, et al. Apple pomace improves the quality of pig manure aerobic compost by reducing emissions of NH3 and N2O[J]. Scientific Reports, 2017, 7(1): 870. |
69 | JIN N B. The effect of phosphate buffer on improving the performance of autothermal thermophilic aerobic digestion for sewage sludge[J]. RSC Advances, 2018, 8(17): 9175-9180. |
3 | BENSIDHOM G, HASSEN-TRABELSI A BEN, ALPER K, et al. Pyrolysis of date palm waste in a fixed-bed reactor: characterization of pyrolytic products[J]. Bioresource Technology, 2018, 247: 363-369. |
4 | MARIETA C, GUERRERO A, LEON I. Municipal solid waste incineration fly ash to produce eco-friendly binders for sustainable building construction[J]. Waste Management, 2020, 120: 114-124. |
70 | 候月卿, 赵立欣, 孟海波, 等. 生物炭和腐植酸类对猪粪堆肥重金属的钝化效果[J]. 农业工程学报, 2014, 30(11): 205-215. |
HOU Yueqing, ZHAO Lixin, MENG Haibo, et al. Passivating effect of biochar and humic acid materials on heavy metals during composting of pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(11): 205-215. | |
71 | 栾润宇, 高珊, 徐应明, 等. 不同钝化剂对鸡粪堆肥重金属钝化效果及其腐熟度指标的影响[J]. 环境科学, 2020, 41(1): 469-478. |
LUAN Runyu, GAO Shan, XU Yingming, et al. Effect of different passivating agents on the stabilization of heavy metals in chicken manure compost and its maturity evaluating indexes[J]. Environmental Science, 2020, 41(1): 469-478. | |
72 | LIU S G, WU M, YAO X F. Effects of reactive oxygen species scavengers on thermophilic micro-aerobic digestion for sludge stabilization[J]. Environmental Research, 2020, 185: 109453. |
73 | 杨新文, 侯满伟, 张居尚, 等. 促进堆肥腐熟的脱落酸添加剂、其使用方法和应用: ZL201210451431.0[P]. 2012-11-13. |
5 | MORTAZAVI CHAMCHALI M, GHAZIFARD A. The use of fuzzy logic spatial modeling via GIS for landfill site selection (case study: Rudbar-Iran)[J]. Environmental Earth Sciences, 2019, 78(10): 305. |
6 | CHEN Y, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: a review[J]. Bioresource Technology, 2008, 99(10): 4044-4064. |
7 | CHIA W Y, CHEW K W, LE C F, et al. Sustainable utilization of biowaste compost for renewable energy and soil amendments[J]. Environmental Pollution, 2020, 267: 115662. |
8 | YAO G D, GUO Y L, LE Y, et al. Energy valorization of food waste: rapid conversion of typical polysaccharide components to formate[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17069-17075. |
9 | BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453. |
10 | MACKIE R I, STROOT P G, VAREL V H. Biochemical identification and biological origin of key odor components in livestock waste[J]. Journal of Animal Science, 1998, 76(5): 1331. |
11 | LOPEZ ZAVALA M A, FUNAMIZU N, TAKAKUWA T. Temperature effect on aerobic biodegradation of feces using sawdust as a matrix[J]. Water Research, 2004, 38(9): 2406-2416. |
12 | CHEN M L, HUANG Y M, WANG C, et al. The conversion of organic nitrogen by functional bacteria determines the end-result of ammonia in compost[J]. Bioresource Technology, 2020, 299: 122599. |
13 | AWASTHI S K, LIU T, AWASTHI M K, et al. Evaluation of biochar amendment on heavy metal resistant bacteria abundance in biosolids compost[J]. Bioresource Technology, 2020, 306: 123114. |
14 | SHI S S, ZOU D X, WANG Q H, et al. Responses of ammonia-oxidizing bacteria community composition to temporal changes in physicochemical parameters during food waste composting[J]. RSC Advances, 2016, 6(12): 9541-9548. |
15 | HUANG K, LI F S, WEI Y F, et al. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes[J]. Bioresource Technology, 2014, 170: 45-52. |
16 | 董静, 潘玉香, 朱莉萍, 等. 果蔬中54种农药残留的QuEChERS/GC-MS快速分析[J]. 分析测试学报, 2008, 27(1): 66-69. |
DONG Jing, PAN Yuxiang, ZHU Liping, et al. Improvements and applications of the QuEChERS method in multi-residue analysis of 54 pesticides in vegetables and fruits[J]. Journal of Instrumental Analysis, 2008, 27(1): 66-69. | |
17 | HE Y M, XIE K Z, XU P Z, et al. Evolution of microbial community diversity and enzymatic activity during composting[J]. Research in Microbiology, 2013, 164(2): 189-198. |
18 | 张红娟, 郭夏丽, 王岩. 林可霉素菌渣与牛粪联合堆肥实验研究[J]. 环境工程学报, 2011, 5(1): 231-234. |
ZHANG Hongjuan, GUO Xiali, WANG Yan. Study on co-composting of lincomycin fermentation dregs and cattle manure[J]. Chinese Journal of Environmental Engineering, 2011, 5(1): 231-234. | |
19 | LIU W, HUO R, XU J X, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting[J]. Bioresource Technology, 2017, 235: 43-49. |
20 | RICH N, BHARTI A, KUMAR S. Effect of bulking agents and cow dung as inoculant on vegetable waste compost quality[J]. Bioresource Technology, 2018, 252: 83-90. |
21 | LIU S G, ZHU N W, NING P, et al. The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: Effects of temperature on stabilization process and sludge properties[J]. Chemical Engineering Journal, 2012, 197: 223-230. |
22 | LIU S G, YANG X, YAO X F. Impacts of ammonia nitrogen on autothermal thermophilic micro-aerobic digestion for sewage sludge treatment[J]. Chemosphere, 2018, 213: 268-275. |
73 | YANG X W, HOU M W, ZHANG J S, et al. Abscisic acid additive for compost, method of use and application: ZL201210451431.0[P]. 2012-11-13. |
23 | CHEN J L, ORTIZ R, STEELE T W J, et al. Toxicants inhibiting anaerobic digestion: a review[J]. Biotechnology Advances, 2014, 32(8): 1523-1534. |
24 | GALLERT C, WINTER J. Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production[J]. Applied Microbiology and Biotechnology, 1997, 48(3): 405-410. |
25 | KAYHANIAN M. Ammonia inhibition in high-solids biogasification: an overview and practical solutions[J]. Environmental Technology, 1999, 20(4): 355-365. |
26 | FU L H, HU K D, HU L Y, et al. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus Niger and Penicillium italicum[J]. PLoS One, 2014, 9(8): e104206. |
27 | O’FLAHERTY V, MAHONY T, O’KENNEDY R, et al. Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria[J]. Process Biochemistry, 1998, 33(5): 555-569. |
28 | FRANCOLEON N E, CARRINGTON S J, FUKUTO J M. The reaction of H2S with oxidized thiols: generation of persulfides and implications to H2S biology[J]. Archives of Biochemistry and Biophysics, 2011, 516(2): 146-153. |
29 | RÍOS-GONZÁLEZ B B, ROMÁN-MORALES E M, PIETRI R, et al. Hydrogen sulfide activation in hemeproteins: the sulfheme scenario[J]. Journal of Inorganic Biochemistry, 2014, 133: 78-86. |
30 | 胡霜. 接种白腐真菌改善含铅农业固废微环境及其作用机理的研究[D]. 长沙: 湖南大学, 2011. |
HU Shuang. Research on improving the microenvironment of Pb-contaminated agricultural wastes by incubating with white-rot fungus and its mechanism[D]. Changsha: Hunan University, 2011. | |
31 | GUZZO J, DUBOW M S. A novel selenite-and tellurite-inducible gene in Escherichia coli[J]. Applied and Environmental Microbiology, 2000, 66(11): 4972-4978. |
32 | AMIR S, HAFIDI M, MERLINA G, et al. Sequential extraction of heavy metals during composting of sewage sludge[J]. Chemosphere, 2005, 59(6): 801-810. |
33 | LIU S G, ZHU N W, LI L Y. The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: stabilization process and mechanism[J]. Bioresource Technology, 2012, 104: 266-273. |
34 | YANG F, LI G X, SHI H, et al. Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting[J]. Waste Management, 2015, 36: 70-76. |
35 | JARRELL K F, SPROTT G D, MATHESON A T. Intracellular potassium concentration and relative acidity of the ribosomal proteins of methanogenic bacteria[J]. Canadian Journal of Microbiology, 1984, 30(5): 663-668. |
36 | 沈标, 李顺鹏, 赵硕伟, 等. 氯苯、对硝基酚对土壤生物活性的影响[J]. 土壤学报, 1997, 34(3): 309-314. |
SHEN Biao, LI Shunpeng, ZHAO Shuowei, et al. Effect of chlorobenzene and nitrophenol on soil biological activity[J]. Acta Pedologica Sinica, 1997, 34(3): 309-314. | |
37 | VOBĚRKOVÁ S, VAVERKOVÁ M D, BUREŠOVÁ A, et al. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste[J]. Waste Management, 2017, 61: 157-164. |
38 | SHI H L, WANG X C, LI Q, et al. Effects of elevated tetracycline concentrations on aerobic composting of human feces: composting behavior and microbial community succession[J]. Indian Journal of Microbiology, 2018, 58(4): 423-432. |
39 | ZHENG G D, YU B, WANG Y W, et al. Removal of triclosan during wastewater treatment process and sewage sludge composting—A case study in the middle reaches of the Yellow River[J]. Environment International, 2020, 134: 105300. |
40 | EKLIND Y, BECK-FRIIS B, BENGTSSON S, et al. Chemical characterization of source-separated organic household waste[J]. Swedish Journal of Agricultural Research, 1997, 27: 167-178. |
41 | CHEUNG H N B, HUANG G H, YU H. Microbial-growth inhibition during composting of food waste: effects of organic acids[J]. Bioresource Technology, 2010, 101(15): 5925-5934. |
42 | JIN N B, SHAO Y W, YUAN H P, et al. Enhancement of autothermal thermophilic aerobic digestion by chemical approach: dosage of ferric nitrate on disinhibition of excessive volatile fatty acids[J]. Chemical Engineering Journal, 2015, 265: 9-15. |
43 | 袁林江. 环境工程微生物学[M]. 北京: 化学工业出版社, 2012. |
YUAN Linjiang. Environmental engineering microbiology[M]. Beijing: Chemical Industry Press, 2012. | |
44 | ARIAS O, VIÑA S, UZAL M, et al. Composting of pig manure and forest green waste amended with industrial sludge[J]. Science of the Total Environment, 2017, 586: 1228-1236. |
45 | QIAO C C, PENTON C R, LIU C, et al. Patterns of fungal community succession triggered by C/N ratios during composting[J]. Journal of Hazardous Materials, 2021, 401: 123344. |
46 | SALUDES R B, IWABUCHI K, KAYANUMA A, et al. Composting of dairy cattle manure using a thermophilic-mesophilic sequence[J]. Biosystems Engineering, 2007, 98(2): 198-205. |
47 | GERMER J, BOH M Y, SCHOEFFLER M, et al. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter[J]. Waste Management, 2010, 30(2): 185-191. |
48 | SOOMRO A F, ABBASI I A, NI Z, et al. Influence of temperature on enhancement of volatile fatty acids fermentation from organic fraction of municipal solid waste: synergism between food and paper components[J]. Bioresource Technology, 2020, 304: 122980. |
49 | RASAPOOR M, NASRABADI T, KAMALI M, et al. The effects of aeration rate on generated compost quality, using aerated static pile method[J]. Waste Management, 2009, 29(2): 570-573. |
50 | SHEN Y J, REN L M, LI G X, et al. Influence of aeration on CH4, N2O and NH3 emissions during aerobic composting of a chicken manure and high C/N waste mixture[J]. Waste Management, 2011, 31(1): 33-38. |
51 | KULCU R, YALDIZ O. Determination of aeration rate and kinetics of composting some agricultural wastes[J]. Bioresource Technology, 2004, 93(1): 49-57. |
52 | 瞿广飞, 陈晓天, 刘树根. 一种畜禽粪便除臭剂: ZL201610576971. X[P]. 2019-12-03. |
QU G F, CHEN X T, LIU S G. A deodorant for livestock and poultry manure: ZL201610576971. X[P]. 2019-12-03. | |
53 | LIN C. A negative-pressure aeration system for composting food wastes[J]. Bioresource Technology, 2008, 99(16): 7651-7656. |
54 | CHIKAE M, IKEDA R, KERMAN K, et al. Estimation of maturity of compost from food wastes and agro-residues by multiple regression analysis[J]. Bioresource Technology, 2006, 97(16): 1979-1985. |
[1] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[2] | 范思涵, 于国熙, 来超超, 何欢, 黄斌, 潘学军. 非生物改性对厌氧微生物产物光化学活性影响[J]. 化工进展, 2023, 42(4): 2180-2189. |
[3] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[4] | 任可欣, 鲁军辉, 王随林, 唐进京. 低湿CO2/H2O混合气体吸附特性实验[J]. 化工进展, 2022, 41(12): 6698-6710. |
[5] | 杨硕, 余薇薇, 杨伦, 杜邦昊, 谢明原, 赵晨菊, 万巧玲, 潘伟亮. 纳米零价铁降解水中17β-雌二醇的作用机制[J]. 化工进展, 2020, 39(9): 3826-3834. |
[6] | 陈彦彤, 李旭东, 陶冶, 黄红缨, 叶招莲, 盖鑫磊. 有机激发三重态参与的光化学反应研究进展[J]. 化工进展, 2020, 39(8): 3344-3353. |
[7] | 任黎晔,朱易春,张光明,连军锋,章璋,李鑫,黄书昌,田帅,袁佳彬. 低强度超声波对短程硝化污泥的影响[J]. 化工进展, 2020, 39(4): 1591-1596. |
[8] | 唐正,赵松,钱雅洁,薛罡,贾汉忠,高品. 生物炭持久性自由基形成机制及环境应用研究进展[J]. 化工进展, 2020, 39(4): 1521-1527. |
[9] | 李 维1,韩大超1,张 红1,马 超2,蓝兴旺2,张雪平2. 压缩热再生干燥器活性氧化铝固体吸附剂的除湿性能[J]. 化工进展, 2013, 32(10): 2316-2318. |
[10] | 彭益强,刘 鹏,邓 峰,刘 宇 . 源于马铃薯的多酚氧化酶活性中心必需基团组成与抑制机理[J]. 化工进展, 2012, 31(02 ): 406-411. |
[11] | 石晓鹏,梅 华,沈 健. Ni2O3催化剂的制备及其催化NaClO分解产生活性氧的性能 [J]. 化工进展, 2009, 28(6): 962-. |
[12] | 张 婷,俞树荣,冯辉霞,王 毅. 复合吸附脱硫剂的制备及其脱除SO2实验 [J]. 化工进展, 2009, 28(1): 159-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |