化工进展 ›› 2021, Vol. 40 ›› Issue (12): 6590-6603.DOI: 10.16085/j.issn.1000-6613.2020-2545
宋民航1(), 赵立新2,3(), 徐保蕊2,3, 刘琳2,3, 张爽2,3
收稿日期:
2020-12-21
修回日期:
2021-03-08
出版日期:
2021-12-05
发布日期:
2021-12-21
通讯作者:
赵立新
作者简介:
宋民航(1986—),男,博士,副研究员,主要从事多相旋流分离及煤炭清洁高效燃烧方面的研究工作。E-mail:基金资助:
SONG Minhang1(), ZHAO Lixin2,3(), XU Baorui2,3, LIU Lin2,3, ZHANG Shuang2,3
Received:
2020-12-21
Revised:
2021-03-08
Online:
2021-12-05
Published:
2021-12-21
Contact:
ZHAO Lixin
摘要:
为解决微小粒径分散相分离效率不高,制约水力旋流器分离效率深度提升的问题,本文以液-液水力旋流器为分析对象,在总结已有理论及研究成果基础上,分别从影响旋流分离效率的关键物理因素,包括分散相在旋流场内的停留时间、分散相粒径、分散相距轴心旋转半径、分散相切向旋转速度以及旋流分离工艺系统五个方面出发,首先对已有提升旋流分离效率的水力旋流器串联工艺、分散相粒径聚结器、小直径旋流分离器及增强切向速度的动态水力旋流器等技术措施进行分析总结,并在此基础上提出了促进旋流分离效率深度提升的新型技术方案,为液-液两相以及固-液、气-液、气-液-固等多相混合介质的高效旋流分离器设计及系统优化提供一定理论及技术支撑。
中图分类号:
宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 液-液水力旋流器分离效率深度提升技术探讨[J]. 化工进展, 2021, 40(12): 6590-6603.
SONG Minhang, ZHAO Lixin, XU Baorui, LIU Lin, ZHANG Shuang. Discussion on technology of improving separation efficiency of liquid-liquid hydrocyclone[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6590-6603.
1 | THEW M. Hydrocyclone redesign for liquid-liquid separation[J]. The Chemical Engineering, 1986, 7: 17-23. |
2 | 付鹏波, 黄渊, 王剑刚, 等. 旋流分离过程强化新技术[J]. 化工进展, 2020, 39(12): 4766-4778. |
FU P B, HUANG Y, WANG J G, et al. Process intensification technology for hydrocyclone separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4766-4778. | |
3 | 张茂山, 朱元洪, 肖勇, 等. 含油废水处理技术进展[J]. 中国资源综合利用, 2007, 25(8): 22-24. |
ZHANG M S, ZHU Y H, XIAO Y, et al. Research advance in treatment of oily wastewater[J]. China Resources Comprehensive Utilization, 2007, 25(8): 22-24. | |
4 | CARLOS Gomez, JUAN Caldentey, WANG S B, et al. Oil/water separation in liquid/liquid hydrocyclones (LLHC): part 1-experimental investigation[J]. SPE Journal, 2002, 7(4): 353-372. |
5 | 王振波, 郭颖, 金有海. 具有螺旋双曲面溢流管结构的水力旋流器: CN2438508Y[P]. 2001-07-11. |
WANG Z B, GUO Y, JIN Y H. Hydrocyclone with screw double-curve overflow pipe structure: CN2438508Y[P]. 2001-07-11. | |
6 | 刘培坤, 李子硕, 杨兴华, 等. 中心曲面锥型旋流器分离性能的数值模拟[J]. 金属矿山, 2020(12): 184-189. |
LIU P K, LI Z S, YANG X H, et al. Numerical simulation of separation performance of the hydrohydrocyclone with imbeded curve surface cone at the centre[J]. Metal Mine, 2020(12): 184-189. | |
7 | LARSSON K E. Cyclone separator: US5653347[P]. 1997-08-05. |
8 | PETTY C A, PARKS S M. Flow structures within miniature hydrocyclones[J]. Minerals Engineering, 2004, 17(5): 615-624. |
9 | 魏可峰, 赵强, 崔晓亮, 等. 锥角对水力旋流器流场及分离性能影响的数值试验研究[J]. 金属矿山, 2019(4): 147-153. |
WEI K F, ZHAO Q, CUI X L, et al. Effects of cone angle on the flow field and separation performance of hydrocyclones[J]. Metal Mine, 2019(4): 147-153. | |
10 | NUNES S A, MAGALHÃES H L F, DE FARIAS NETO S R, et al. Impact of permeable membrane on the hydrocyclone separation performance for oily water treatment[J]. Membranes, 2020, 10(11): 350. |
11 | 聂涛. 轴流式液液旋流器内流场的数值模拟[D]. 东营: 中国石油大学, 2008. |
NIE T. Number simulation of the flow field in axial flow hydrocyclone[D]. Dongying: China University of Petroleum, 2008. | |
12 | LI F, LIU P K, YANG X H, et al. Effects of inlet concentration on the hydrocyclone separation performance with different inlet velocity[J]. Powder Technology, 2020, 375: 337-351. |
13 | 薛红兵, 张有志. 液-液水力旋流器的模拟试验[J]. 油田地面工程, 1994, 13(4): 1-6. |
XUE H B, ZHANG Y Z. Simulation test of fluid-fluid hydraulic cyclone[J]. Oil-Gasfield Surface Engineering, 1994, 13(4): 1-6. | |
14 | 李健, 褚良银. 液液分离水力旋流器研究进展[J]. 化工装备技术, 1998(5): 45-50. |
LI J, CHU L Y. Research progress of liquid-liquid separation hydrocyclones[J]. Chemical Equipment Technology, 1998(5): 45-50. | |
15 | 李玉星, 张劲松, 冯叔初. CFD 在液-液水力旋流器能耗及分离效率预测中的应用[J]. 流体机械, 2001, 29(10): 20-24. |
LI Y X, ZHANG J S, FENG S C. Application of CFD to the prediction of pressure loss and separation efficiency in hydrocyclone[J]. Fluid Machinery, 2001, 29(10): 20-24. | |
16 | 冯进, 陈海, 陈刚薛, 等. 70mm单锥脱油旋流器主要尺寸参数优化试验[J]. 过滤与分离, 1997, 7(1): 7-10. |
FENG J, CHEN H, CHEN G X, et al. Testing optimization of major dimensional parameter for 70mm hydrocyclone with single-cone[J]. Filter & Separator, 1997, 7(1): 7-10. | |
17 | 刘美丽, 陈家庆. 一种管式油水旋流分离设备: 201620148832.2[P]. 2016-07-27. |
LIU M L, CHEN J Q. Tubular oil-water cyclone separation equipment: 201620148832.2[P]. 2016-07-27. | |
18 | 赵立新, 贺杰. 轨迹分析法预测液-液水力旋流器的效率[J]. 国外石油机械, 1997(3): 52-60. |
ZHAO L X, HE J. Trajectory analysis method to predict the efficiency of liquid-liquid hydrocyclones[J]. Foreign Petroleum Machinery, 1997(3): 52-60. | |
19 | 池燕妮, 孟祥海, 张睿, 等. 液液旋流分离器的数值模拟研究进展[J/OL]. 过程工程学报[2021-02-13]. . |
CHI Y N, MENG X H, ZHANG R, et al. Progress in numerical simulation of liquid-liquid cyclone separator[J/OL]. The Chinese Journal of Process Engineering[2021-02-13]. . | |
20 | 赵立新, 宋民航, 徐保蕊, 等. 长流道导叶式水力旋流器的数值模拟分析[C]//第十一届全国非均相分离学术交流会论文集. 2013: 84-91. |
ZHAO L X, SONG M H, XU B R, et al. Numerical simulation analysis of long-channel hydrocyclone with guide vane[C]//Proceedings of the 11th National Heterogeneous Separation Academic Exchange Conference. 2013: 84-91. | |
21 | 邵海龙, 曹成超, 严海军, 等. 螺旋多锥体旋流器在七角井铁矿选矿中的应用[J]. 现代矿业, 2020, 36(12): 109-111. |
SHAO H L, CAO C C, YAN H J, et al. Application of spiral multi-cone swirler qijiaojing in iron ore processing[J]. Modern Mining, 2020, 36(12): 109-111. | |
22 | 马佳伟, 崔广文. 三锥角水介旋流器锥体结构优化及数值模拟[J]. 煤炭工程, 2020, 52(9): 147-151. |
MA J W, CUI G W. Optimization and numerical simulation of cone structure of tri-cone angle hydrocyclone[J]. Coal Engineering, 2020, 52(9): 147-151. | |
23 | LI S H, LIU Z M, CHANG Y L, et al. Removal of coke powders in coking wastewater using a hydrocyclone optimized by n-value[J]. The Science of the Total Environment, 2021, 752: 141887. |
24 | ZHAO L X, JIANG M H, XU B R, et al. Development of a new type high-efficient inner-cone hydrocyclone[J]. Chemical Engineering Research and Design, 2012, 90(12): 2129-2134. |
25 | 蒋明虎, 赵立新, 李枫, 等. 旋流分离技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000. |
JIANG M H, ZHAO L X, LI F, et al. Cyclone separation technology[M]. Harbin: Harbin Institute of Technology Press, 2000. | |
26 | 宋民航. 新型导叶式水力旋流器设计与结构优选[D]. 大庆: 东北石油大学, 2013. |
SONG M H. Design and structure optimization on a new vane-guided hydrocyclone[D]. Daqing: Northeast Petroleum University, 2013. | |
27 | 盛庆娇. 新型螺旋入口水力旋流器模拟分析及实验研究[D]. 大庆: 东北石油大学, 2013. |
SHENG Q J. Simulation analysis and experimental study on a new type spiral inlet hydrocyclone[D]. Daqing: Northeast Petroleum University, 2013. | |
28 | 赵立新, 宋鸽, 徐保蕊, 等. 井下油水旋流分离两级串联管柱优化[J]. 石油机械, 2015, 43(10): 76-80, 85. |
ZHAO L X, SONG G, XU B R, et al. Tube optimization for the downhole two stage series hydrocyclone[J]. China Petroleum Machinery, 2015, 43(10): 76-80, 85. | |
29 | ZHANG Y, WANG Y, LI F, et al. Optimal design of the linkage between two downhole hydrocyclones in series[C]//Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA. 2014. |
30 | ZHANG Y, JIANG M H, ZHAO L X, et al. Design and experimental study of hydrocyclone in series and in bridge of downhole oil/water separation system[C]//Proceedings of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA, 2009. |
31 | 王羕. 井下两级串联旋流分离技术研究[D]. 大庆: 东北石油大学, 2014. |
WANG Y. Research of downhole two-stage in-series hydrocyclone separation technology[D]. Daqing: Northeast Petroleum University, 2014. | |
32 | 朱宝军. 化学驱污水旋流处理设备流场及系统可靠性分析[D]. 大庆: 大庆石油学院, 2008. |
ZHU B J. Flow field and system reliability analysis of hydrocyclonic treating facilities for chemical flooding wastewater[D]. Daqing: Daqing Petroleum Institute, 2008. | |
33 | 钟功祥, 吴陈, 严鹏, 等. 井下油水膜分离装置设计与性能研究[J]. 石油机械, 2020, 48(9): 93-100. |
ZHONG G X, WU C, YAN P, et al. Design and performance analysis of downhole oil-water membrane separation device[J]. China Petroleum Machinery, 2020, 48(9): 93-100. | |
34 | 钟功祥, 谢锐, 严鹏, 等. 井下油水膜分离器设计与仿真分析[J]. 流体机械, 2020, 48(9): 35-43. |
ZHONG G X, XIE R, YAN P, et al. Design and simulation analysis of downhole oil-water membrane separator[J]. Fluid Machinery, 2020, 48(9): 35-43. | |
35 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
LIU H, GAO Y, PEI X H, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
36 | 赵立新, 蒋明虎, 李枫, 等. 一种二次分离旋流器: 201210345243.X[P]. 2013-08-21. |
ZHAO L X, JIANG M H, LI F, et al. A secondary separation hydrocyclone: 201210345243.X[P]. 2013-08-21. | |
37 | 赵立新, 蒋明虎, 刘书孟. 微孔材料对气携式液-液水力旋流器性能的影响[J]. 石油机械, 2006, 34(10): 5-7. |
ZHAO L X, JIANG M H, LIU S M. Influence of micro-pore materials on the air-injected hydrocyclone[J]. China Petroleum Machinery, 2006, 34(10): 5-7. | |
38 | 陈德海, 魏振禄, 蒋明虎, 等. 大锥段注气对液-液水力旋流器分离性能的影响[J]. 化工机械, 2014, 41(4): 480-483, 495. |
CHEN D H, WEI Z L, JIANG M H, et al. Influence of big cone air-injection on separation performance of liquid-liquid hydrocyclone[J]. Chemical Engineering & Machinery, 2014, 41(4): 480-483, 495. | |
39 | 潘威丞, 陈家庆, 姬宜朋, 等. 管式静电旋流分离器的设计及内部流场研究[J]. 石油机械, 2019, 47(11): 74-80. |
PAN W C, CHEN J Q, JI Y P, et al. Structure design and internal flow field study of tubular electrostatic cyclone separator[J]. China Petroleum Machinery, 2019, 47(11): 74-80. | |
40 | 胡康, 何利民, 张鑫儒, 等. 柱状旋流电脱水器分离性能实验研究[J]. 石油化工高等学校学报, 2017, 30(4): 18-22. |
HU K, HE L M, ZHANG X R, et al. Investigation on separation characteristic of cylindrical cyclone dehydrator[J]. Journal of Petrochemical Universities, 2017, 30(4): 18-22. | |
41 | 赵文君, 赵立新, 徐保蕊, 等. 聚结-旋流分离装置流场特性的数值模拟分析研究[J]. 流体机械, 2015, 43(7): 22-26. |
ZHAO W J, ZHAO L X, XU B R, et al. Numerical simulation analysis and research to fluid field of a coalescence-cyclone separator[J]. Fluid Machinery, 2015, 43(7): 22-26. | |
42 | 蒋明虎, 侯平涛, 王震, 等. 螺旋管聚结机理及数值模拟分析[J]. 石油机械, 2012, 40(4): 104-107. |
JIANG M H, HOU P T, WANG Z, et al. A numerical simulation analysis of coalescence mechanism of spiral tube[J]. China Petroleum Machinery, 2012, 40(4): 104-107. | |
43 | 邢雷, 蒋明虎, 赵立新, 等. 水力聚结器结构参数优选[J/OL]. 机械科学与技术. . |
XING L, JIANG M H, ZHAO L X, et al. Structural parameters optimization of hydraulic coalescer[J/OL]. Mechanical Science and Technology for Aerospace Engineering. . | |
44 | KNUDSEN B L, FROST T K, WILLUMSEN C F, et al. Meeting the zero discharge for produced water[R]. SPE 86671, 2004. |
45 | GRINI P G, HJELSVOLD M, JOHNSEN S. Choosing produced water treatment technologies based on the environmental impact reduction[R]. SPE 74002, 2002. |
46 | 赵立新, 蒋明虎, 徐保蕊, 等. 轴流式反转入口流道旋流器: CN102847618B[P]. 2017-03-15. |
ZHAO L X, JIANG M H, XU B R, et al. Axial-flow-type inverted inlet flow channel swirler: CN104815768B[P]. 2017-03-15. | |
47 | 宋民航, 赵岩, 邵春岩, 等. 一种粒径分级聚结式旋流器: 201920899416.X[P]. 2020-06-05. |
SONG M H, ZHAO Y, SHAO C Y, et al. Particle size classification coalescing hydrocyclone: 201920899416.X[P]. 2020-06-05. | |
48 | 付鹏波, 汪林华, 王飞, 等. 进口颗粒排序型旋流器: 201610665460.5[P]. 2019-01-01. |
PU P B, WANG L H, WANG F, et al. A cyclone with particle reordered at the inlet: 201610665460.5[P]. 2019-01-01. | |
49 | FU P B, WANG F, YANG X J, et al. Inlet particle-sorting cyclone for the enhancement of PM2.5 separation[J]. Environmental Science & Technology, 2017, 51(3): 1587-1594. |
50 | 袁惠新, 吴敏浩, 付双成, 等. 微型旋流器溢流口结构参数对SCR废催化剂分离性能的影响[J]. 机械设计与制造, 2020(8): 159-162. |
YUAN H X, WU M H, FU S C, et al. Effect of design parameters of a micro hydrocyclone on the separation performance of waste SCR catalyst[J]. Machinery Design & Manufacture, 2020(8): 159-162. | |
51 | 赵立新, 宋民航, 杨宏燕, 等. 基于粒径选择的水力旋流分离装置: 201811002039.1[P]. 2020-06-02. |
ZHAO L X, SONG M H, YANG H Y, et al. Hydrocyclone separation device based on particle size selection: 201811002039.1[P]. 2020-06-02. | |
52 | 马骏, 何亚其, 白健华, 等. 入口结构对粒径重构旋流器分离性能影响分析[J/OL]. 机械科学与技术. . |
MA J, HE Q Y, BAI J H, et al. Impact analysis of inlet structure on performance of hydrocyclone with droplet size reconstruction[J/OL]. Mechanical Science and Technology for Aerospace Engineering. . | |
53 | 史仕荧, 邓晓辉, 吴应湘, 等. 操作参数对柱形旋流器油水分离性能的影响[J]. 石油机械, 2011, 39(7): 4-8. |
SHI S Y, DENG X H, WU Y X, et al. The effect of operating parameters on the oil-water separation performance of the cylindrical cyclone[J]. China Petroleum Machinery, 2011, 39(7): 4-8. | |
54 | 王尊策. 复合式水力旋流器的结构及特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2003: 25-29. |
WANG Z C. Research on the structure and the characteristics of compound hydrocyclones[D]. Harbin: Harbin Engineering University, 2003: 25-29. | |
55 | GAY J C, TRIPONEY G, BEZARD C, et al. Rotary cyclone will improve oily water treatment and reduce space requirement/weight on offshore platforms[C]//SPE Offshore Europe, Aberdeen, United Kingdom, 1987. |
56 | ZHAO L X, LI F, MA Z Z, et al. Theoretical analysis and experimental study of dynamic hydrocyclones[J]. Journal of Energy Resources Technology, 2010, 132: 042901-1. |
57 | Anon. Enviro voraxial technology seals IP sale with Schlumberger[J]. Filtration Industry Analyst, 2017, 2017(6):16. |
58 | company Schlumberher. Impeller-induced cyclonic separator[EB/OL].[2020-08-15]. . |
59 | 姬宜朋. 轴向涡流分离器的理论与实验研究[D]. 北京: 北京化工大学, 2015. |
JI Y P. Theoretical & experimental study onto the voraxial-separator[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
60 | 姬宜朋, 陈家庆, 蔡小磊, 等. BIPTVAS-Ⅱ型轴向涡流分离器工程样机及其在流花11-1油田的现场试验[J]. 中国海上油气, 2016, 28(1): 133-138. |
JI Y P, CHEN J Q, CAI X L, et al. A BIPTVAS-Ⅱ voraxial separator prototype and its pilot test in LH 11-1 oilfield[J]. China of Offshore Oil and Gas, 2016, 28(1): 133-138. | |
61 | 宋民航, 赵立新, 杨宏燕, 等. 一种溢流管自旋式水力旋流器: CN110665658A[P]. 2020-01-10. |
SONG M H, ZHAO L X, YANG H Y, et al. Overflow pipe self-rotating type hydrocyclone: CN110665658A[P]. 2020-01-10. | |
62 | 赵立新, 宋民航, 杨宏燕, 等. 一种旋流室自旋式水力旋流器: CN110665657A[P]. 2020-01-10. |
ZHAO L X, SONG M H, YANG H Y, et al. Rotational-flow chamber spin-type hydrocyclone: CN110665657A[P]. 2020-01-10. | |
63 | 赵立新, 宋民航, 杨宏燕, 等. 一种降低液滴破碎的轴向内芯式阀门: CN109163112A[P]. 2019-01-08. |
ZHAO L X, SONG M H, YANG H Y, et al. Axial inner core type valve capable of reducing drop breakup: CN109163112A[P]. 2019-01-08. | |
64 | FERNANDES C A, RIBEIRO R F, LOUREIRO J B, et al. Drop sizes of emulsions in cyclonic-based valves[C]//European Turbulence Conference held in Lyon, France, 2013. |
65 | MARINS L P M, DUARTE D G, LOUREIRO J B R, et al. LDA and PIV characterization of the flow in a hydrocyclone without an air-core[J]. J. Petroleum Science and Engineering, 2010, 70(3/4): 168-176. |
66 | 刘鹏. 油气开采用井口低剪切节流阀的理论与实验研究[D]. 北京: 北京化工大学, 2014. |
LIU P. Theoretical and experimental research of low shear wellhead choke vale used in oil and gas exploration[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
67 | 刘冰, 赵振江, 韦尧尧, 等. 分流比对旋流器影响的数值模拟与试验分析[J]. 煤矿机械, 2020, 41(11): 26-29. |
LIU B, ZHAO Z J, WEI Y Y, et al. Numerical simulation and experimental analysis of influence of split ratio on hydrocyclone[J]. Coal Mine Machinery, 2020, 41(11): 26-29. | |
68 | 宋民航, 赵立新, 杨宏燕, 等. 一种调节旋流分离器分流比的双腔室阀门: CN109107790A[P]. 2019-01-01. |
SONG M H, ZHAO L X, YANG H Y, et al. Double-chamber valve for regulating split ratio of cyclone separator: CN109107790A[P]. 2019-01-01. | |
69 | 武金辉, 巩志强, 王振波, 等. 含油污泥分离技术研究进展[J/OL]. 应用化工[2021-02-13]. . |
WU J H, GONG Z Q, WANG Z B, et al. Research progress on separation technology of oily sludge[J/OL]. Applied Chemical Industry[2021-02-13]. . |
[1] | 宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 基于入口分散相重排序的旋流强化分离研究进展[J]. 化工进展, 2023, 42(5): 2219-2232. |
[2] | 谢迎春, 王倩倩, 马永丽, 孙国强, 刘明言. 超声波与紫外线耦合脱气杀菌[J]. 化工进展, 2023, 42(3): 1629-1637. |
[3] | 陈二军, 张玉玲, 路少磊, 段海洋, 靳文章. 空气纳米气泡的稳定性及理化特性[J]. 化工进展, 2022, 41(9): 4673-4681. |
[4] | 陈治平, 石发翔, 周文武, 杨志远, 周安宁. 烃类异构化小粒径、多级孔SAPO-11分子筛催化剂研究进展[J]. 化工进展, 2022, 41(9): 4767-4781. |
[5] | 王泽鹏, 苑中显, 王洁, 文鑫, 刘一默. 硅胶粒径对太阳能吸附制冷系统性能的影响[J]. 化工进展, 2022, 41(7): 3545-3552. |
[6] | 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 煤粉粒径对HNCERI气化炉碳转化率与固/液渣层分布的影响[J]. 化工进展, 2022, 41(3): 1517-1527. |
[7] | 朱明军, 胡大鹏. 操作参数对三相卧螺离心机油水砂分离性能影响模拟及实验分析[J]. 化工进展, 2022, 41(10): 5188-5199. |
[8] | 纪子柯, 包成. CO选择性甲烷化的研究进展[J]. 化工进展, 2022, 41(1): 120-132. |
[9] | 徐波, 蒋国斌, 于劲磊, 胡金燕, 赵靓, 徐炳科. 不同表面活性剂对单相微乳液特性的影响[J]. 化工进展, 2021, 40(S1): 350-356. |
[10] | 郑志行, 张家元, 李谦, 周浩宇. 气流床煤气化的Aspen Plus建模:平衡模型和动力学模型[J]. 化工进展, 2021, 40(8): 4165-4172. |
[11] | 徐众, 侯静, 吴恩辉, 李军, 黄平, 唐亚兰. 石墨对活性炭/脂肪酸复合相变材料潜热和导电性能的影响[J]. 化工进展, 2021, 40(7): 3878-3891. |
[12] | 刘金鹏, 赵兵涛, 钱魏锋, 李会梅. 基于BP神经网络的旋风分离器分割粒径模化与预测[J]. 化工进展, 2021, 40(2): 671-677. |
[13] | 李渊, 孙丹, 杨晨芳, 谭小耀. 硅溶胶粒径大小对SAPO-34合成及甲醇制烯烃催化性能的影响[J]. 化工进展, 2020, 39(9): 3701-3707. |
[14] | 王英梅, 董世强, 展静, 吴青柏, 张鹏. 石英砂粒径大小对甲烷水合物形成及分布的影响[J]. 化工进展, 2020, 39(8): 3049-3056. |
[15] | 白春禄, 王春升, 陈家庆, 尚超, 张明, 刘美丽, 郑晓鹏. 油井采出液预分水用轴向水力旋流器的实验研究[J]. 化工进展, 2020, 39(5): 1649-1656. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |