化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5388-5402.DOI: 10.16085/j.issn.1000-6613.2020-2215
收稿日期:
2020-11-04
修回日期:
2021-05-09
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
汪双凤
作者简介:
熊康宁(1994—),男,博士研究生,研究方向为高热流密度电子器件的散热技术。E-mail:基金资助:
XIONG Kangning1,2(), WU Wei1,2, WANG Shuangfeng1,2()
Received:
2020-11-04
Revised:
2021-05-09
Online:
2021-10-10
Published:
2021-10-25
Contact:
WANG Shuangfeng
摘要:
环路热管是一种高效的传热装置。与其他传统的热管相比,其最大的优势是传热距离大、可反重力运行。对环路热管进行总结和回顾,既有利于推进环路热管基础理论的发展,也可促进新型、高效环路热管的开发与利用。本文根据蒸发器的形状对环路热管进行了分类,全面系统地介绍了近五年国内外关于平板形蒸发器环路热管的实验研究和理论模型研究进展,包括吸液芯结构设计、工质选择、蒸发器优化、蒸发器的模型研究及环路热管系统的模型研究,分析了6种吸液芯结构各自的优缺点与应用现状,比较了几种常见工质及3种常规平板形蒸发器环路热管系统模型之间的差异。最后对平板形蒸发器环路热管的研究现状进行了总结,并对未来其在实验研究和理论模型研究方面提出了科学的分析与展望。
中图分类号:
熊康宁, 吴伟, 汪双凤. 平板形蒸发器环路热管的研究进展[J]. 化工进展, 2021, 40(10): 5388-5402.
XIONG Kangning, WU Wei, WANG Shuangfeng. Research and development of loop heat pipe with flat evaporator[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5388-5402.
序号 | 工质 | 吸液芯材质 | 蒸发器材质 | 汽液线材质 | 工质使用范围/℃ | 参考文献 |
---|---|---|---|---|---|---|
1 | 氨 | 双孔镍芯 | 不锈钢 | 不锈钢 | -60~100 | [ |
双孔镍芯+低热导率的多孔材料 | 不锈钢+紫铜 | 不锈钢 | [ | |||
2 | 蒸馏水/去离子水 | 烧结铜粉 | 紫铜 | 紫铜 | 20~200 | [ |
细铜网 | 紫铜 | 紫铜 | [ | |||
不同粒度的复合铜芯 | 黄铜+聚碳酸酯塑料 | 紫铜 | [ | |||
生物碳芯 | 紫铜 | 紫铜 | [ | |||
亲水性聚四氟乙烯 | 不锈钢 | 不锈钢 | [ | |||
镀铜碳纤维 | 紫铜 | 紫铜 | [ | |||
烧结铜丝网 | 黄铜+聚碳酸酯塑料 | 黄铜 | [ | |||
烧结不锈钢丝网 | 黄铜 | 紫铜 | [ | |||
烧结双孔镍芯 | 黄铜 | 紫铜 | 30~120 | [ | ||
3 | 丙酮 | 烧结不锈钢丝 | 铝 | 铝 | 0~120 | [ |
4 | 乙醇 | 烧结铜纤维 | 紫铜 | 紫铜 | 0~130 | [ |
碳纤维 | 紫铜 | 紫铜 | [ | |||
5 | 乙醇+丙酮(体积比1∶1) | 碳纤维 | 紫铜 | 紫铜 | 0~120 | [ |
表1 常见的工质在平板形蒸发器环路热管中的应用
序号 | 工质 | 吸液芯材质 | 蒸发器材质 | 汽液线材质 | 工质使用范围/℃ | 参考文献 |
---|---|---|---|---|---|---|
1 | 氨 | 双孔镍芯 | 不锈钢 | 不锈钢 | -60~100 | [ |
双孔镍芯+低热导率的多孔材料 | 不锈钢+紫铜 | 不锈钢 | [ | |||
2 | 蒸馏水/去离子水 | 烧结铜粉 | 紫铜 | 紫铜 | 20~200 | [ |
细铜网 | 紫铜 | 紫铜 | [ | |||
不同粒度的复合铜芯 | 黄铜+聚碳酸酯塑料 | 紫铜 | [ | |||
生物碳芯 | 紫铜 | 紫铜 | [ | |||
亲水性聚四氟乙烯 | 不锈钢 | 不锈钢 | [ | |||
镀铜碳纤维 | 紫铜 | 紫铜 | [ | |||
烧结铜丝网 | 黄铜+聚碳酸酯塑料 | 黄铜 | [ | |||
烧结不锈钢丝网 | 黄铜 | 紫铜 | [ | |||
烧结双孔镍芯 | 黄铜 | 紫铜 | 30~120 | [ | ||
3 | 丙酮 | 烧结不锈钢丝 | 铝 | 铝 | 0~120 | [ |
4 | 乙醇 | 烧结铜纤维 | 紫铜 | 紫铜 | 0~130 | [ |
碳纤维 | 紫铜 | 紫铜 | [ | |||
5 | 乙醇+丙酮(体积比1∶1) | 碳纤维 | 紫铜 | 紫铜 | 0~120 | [ |
模型类型 | 模型简述 | 核心公式 | 关键参数 |
---|---|---|---|
常规的一维稳态分析模型[ | 一种基于能量守恒、动量守恒和热力学关系的一维稳态分析模型 | (1)压降损失 (2)能量平衡 蒸发器 冷凝器 (3)热力学关系 | 环路热管各区域的压降 |
基于结点分析法建立的一维稳态模型[ | 对环路热管进行节点划分,针对每个节点建立能量和质量平衡方程来求解热量传递、压力损失和质量流量 | (1)压降损失 (2)能量平衡 | 环路热管各节点的压降 |
三维计算流体动力学模型[ | 对环路热管建立相应的几何和数学模型,利用集成的计算流体力学商用软件进行求解,以获得环路热管温度、汽、液分布等情况 | (1)表面压降 (2)蒸汽输运方程 (3)动量方程源项 (4)热流密度 | 热导率 |
表2 平板形蒸发器环路热管系统的常规模型
模型类型 | 模型简述 | 核心公式 | 关键参数 |
---|---|---|---|
常规的一维稳态分析模型[ | 一种基于能量守恒、动量守恒和热力学关系的一维稳态分析模型 | (1)压降损失 (2)能量平衡 蒸发器 冷凝器 (3)热力学关系 | 环路热管各区域的压降 |
基于结点分析法建立的一维稳态模型[ | 对环路热管进行节点划分,针对每个节点建立能量和质量平衡方程来求解热量传递、压力损失和质量流量 | (1)压降损失 (2)能量平衡 | 环路热管各节点的压降 |
三维计算流体动力学模型[ | 对环路热管建立相应的几何和数学模型,利用集成的计算流体力学商用软件进行求解,以获得环路热管温度、汽、液分布等情况 | (1)表面压降 (2)蒸汽输运方程 (3)动量方程源项 (4)热流密度 | 热导率 |
1 | BELHARDJ S, MIMOUNI S, SAIDANE A, et al. Using microchannels to cool microprocessors: a transmission-line-matrix study[J]. Microelectronics Journal, 2003, 34(4): 247-253. |
2 | CHEN X P, YE H Y, FAN X J, et al. A review of small heat pipes for electronics[J]. Applied Thermal Engineering, 2016, 96: 1-17. |
3 | CHEN P, CHANG S, KUEI CHIANG, et al. High power electronic component: review[J]. Recent Patents on Engineering, 2008, 2(3): 174-188. |
4 | 张伟保. 环路热管的热输送性能研究[D]. 广州: 华南理工大学, 2010. |
ZHANG Weibao. Study on heat transfer performance of LHP[D]. Guangzhou: South China University of Technology, 2010. | |
5 | WANG S F, HUO J P, ZHANG X F, et al. Experimental study on operating parameters of miniature loop heat pipe with flat evaporator[J]. Applied Thermal Engineering, 2012, 40: 318-325. |
6 | PASTUKHOV V G, MAIDANIK Y F, VERSHININ C V, et al. Miniature loop heat pipes for electronics cooling[J]. Applied Thermal Engineering, 2003, 23(9): 1125-1135. |
7 | PASTUKHOV V G, MAIDANIK Y F. Copper-water loop heat pipes for PC cooling systems[J]. Thermal Process Engineering, 2010, 2: 279-286(in Russian). |
8 | PASTUKHOV V G, MAYDANIK Y F. Active coolers based on copper-water LHPs for desktop PC[J]. Applied Thermal Engineering, 2009, 29(14/15): 3140-3143. |
9 | 张维. 微小平板形环路热管在电动汽车电池散热中的应用基础研究[D]. 广州: 华南理工大学, 2013. |
ZHANG Wei. Research of miniature flat loop heat pipe on the heat dissipation of electric vehicle battery[D]. Guangzhou: South China University of Technology, 2013. | |
10 | HONG S H, ZHANG X Q, WANG S F, et al. Experimental investigation on the characters of ultra-thin loop heat pipe applied in BTMS[J]. Energy Procedia, 2015, 75: 3192-3200. |
11 | 洪思慧. 超薄平板回路式热管的热传输性能研究[D]. 广州: 华南理工大学, 2018. |
HONG Sihui. Investigation on heat transfer characteristics of ultra-thin flat looped heat pipe[D]. Guangzhou: South China University of Technology, 2018. | |
12 | PUTRA N, ARIANTARA B, PAMUNGKAS R A. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application[J]. Applied Thermal Engineering, 2016, 99: 784-789. |
13 | LI J, LIN F, WANG D M, et al. A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips[J]. Applied Thermal Engineering, 2013, 56(1/2): 18-26. |
14 | ESARTE J, BERNARDINI A, BLANCO J M, et al. Optimizing the design for a two-phase cooling loop heat pipe. Part A: Numerical model, validation and application to a case study[J]. Applied Thermal Engineering, 2016, 99: 892-904. |
15 | 荣波. 回路热管用于LED器件散热的实验研究与数值模拟优化[D]. 合肥: 安徽建筑大学, 2016. |
RONG Bo. The experimental study and numerical simulation on heat dissipation of LED device based on loop heat pipe[D]. Hefei: Anhui Jianzhu University, 2016. | |
16 | HUANG B J, HSU P C, TSAI R J, et al. A thermoelectric generator using loop heat pipe and design match for maximum-power generation[J]. Applied Thermal Engineering, 2015, 91: 1082-1091. |
17 | 陈富城. 基于数据中心余热回收微通道平板环路热管仿真模型研究[D]. 广州: 广东工业大学, 2020. |
CHEN Fucheng. Research on simulation model of micro channel flat loop heat pipe based on waste heat recovery in data center[D]. Guangzhou: Guangdong University of Technology, 2020. | |
18 | SU Q, CHANG S N, ZHAO Y Y, et al. A review of loop heat pipes for aircraft anti-icing applications[J]. Applied Thermal Engineering, 2018, 130: 528-540. |
19 | HODOT R, SARTRE V, LEFÈVRE F, et al. Modeling and experimental tests of a loop heat pipe for aerospace applications[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(1): 182-191. |
20 | ZHAO Y, CHANG S, YANG B, et al. Experimental study on the thermal performance of loop heat pipe for the aircraft anti-icing system[J]. International Journal of Heat and Mass Transfer, 2017, 111: 795-803. |
21 | 霍杰鹏. 平板形蒸发器环路热管传热特性研究[D]. 广州: 华南理工大学, 2012. |
HUO Jiepeng. Study on heat transfer characteristics of loop heat pipe with a flat evaporator[D]. Guangzhou: South China University of Technology, 2012. | |
22 | MAYDANIK Y F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6): 635-657. |
23 | LI J, WANG D M, PETERSON G P. Experimental studies on a high performance compact loop heat pipe with a square flat evaporator[J]. Applied Thermal Engineering, 2010, 30(6/7): 741-752. |
24 | CHEN B B, LIU W, LIU Z C, et al. Experimental investigation of loop heat pipe with flat evaporator using biporous wick[J]. Applied Thermal Engineering, 2012, 42: 34-40. |
25 | WANG D D, LIU Z C, SHEN J, et al. Experimental study of the loop heat pipe with a flat disk-shaped evaporator[J]. Experimental Thermal and Fluid Science, 2014, 57: 157-164. |
26 | XU J Y, ZHANG L, XU H, et al. Experimental investigation and visual observation of loop heat pipes with two-layer composite wicks[J]. International Journal of Heat and Mass Transfer, 2014, 72: 378-387. |
27 | MAYDANIK Y, VERSHININ S, CHERNYSHEVA M, et al. Investigation of a compact copper-water loop heap pipe with a flat evaporator[J]. Applied Thermal Engineering, 2011, 31(16): 3533-3541. |
28 | LIU Z C, LI H, CHEN B B, et al. Operational characteristics of flat type loop heat pipe with biporous wick[J]. International Journal of Thermal Sciences, 2012, 58: 180-185. |
29 | LI J, WANG D M, PETERSON G P B. A compact loop heat pipe with flat square evaporator for high power chip cooling[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4): 519-527. |
30 | CHEN Y M, GROLL M, MERTZ R, et al. Steady-state and transient performance of a miniature loop heat pipe[J]. International Journal of Thermal Sciences, 2006, 45(11): 1084-1090. |
31 | 刘仍通, 潘阳. 回路热管在电子冷却的应用研究进展[J]. 制冷与空调, 2011, 25(1): 65-68. |
LIU Rengtong, PAN Yang. Research development of loop heat pipe for electronic cooling[J]. Refrigeration & Air Conditioning, 2011, 25(1): 65-68. | |
32 | 陈灿. 粉末烧结式不锈钢热管制造及其传热性能研究[D]. 广州: 华南理工大学, 2018. |
CHEN Can. Fabrication and heat transfer performance of stainless steel heat pipe by powder sintering[D]. Guangzhou: South China University of Technology, 2018. | |
33 | CHERNYSHEVA M A, YUSHAKOVA S I, MAYDANIK Y F. Effect of external factors on the operating characteristics of a copper-water loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2015, 81: 297-304. |
34 | XU J Y, WANG Z Y, XU H, et al. Experimental research on the heat performance of a flat copper-water loop heat pipe with different inventories[J]. Experimental Thermal and Fluid Science, 2017, 84: 110-119. |
35 | ZHANG Z K, ZHANG H, MA Z Y, et al. Experimental study of heat transfer capacity for loop heat pipe with flat disk evaporator[J]. Applied Thermal Engineering, 2020, 173: 115183. |
36 | DE ODAGIRI K, NAGANO H. Heat transfer characteristics of flat evaporator loop heat pipe under high heat flux condition with different orientations[J]. Applied Thermal Engineering, 2019, 153: 828-836. |
37 | LIU J Y, ZHANG Y X, FENG C, et al. Study of copper chemical-plating modified polyacrylonitrile-based carbon fiber wick applied to compact loop heat pipe[J]. Experimental Thermal and Fluid Science, 2019, 100: 104-113. |
38 | 刘龙飞. 碳纤维毛细芯平板环路热管的性能研究及优化[D]. 济南: 山东大学, 2019. |
LIU Longfei. Study and optimization of flat lood heat pipe with carbon fiber capillary wicks[D]. Jinan: Shandong University, 2019. | |
39 | 徐计元, 邹勇. 环路热管毛细结构的研究进展[J]. 中国电机工程学报, 2013, 33(8): 65-73. |
XU Jiyuan, ZOU Yong. Research and development of capillary structure in loop heat pipe[J]. Proceedings of the CSEE, 2013, 33(8): 65-73. | |
40 | ZHOU G H, LI J, LV L. An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523. |
41 | ZHOU G H, LI J, JIA Z Z. Power-saving exploration for high-end ultra-slim laptop computers with miniature loop heat pipe cooling module[J]. Applied Energy, 2019, 239: 859-875. |
42 | ZHOU G H, LI J. Two-phase flow characteristics of a high performance loop heat pipe with flat evaporator under gravity[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1063-1074. |
43 | 柳洋. 泡沫金属芯环路热管的性能研究及毛细芯优化[D]. 济南: 山东大学, 2020. |
LIU Yang. Investigate on the properties of LHP with foam metal wicks and the optimization of the wick[D]. Jinan: Shandong University, 2020. | |
44 | ZHOU W, LING W S, DUAN L, et al. Development and tests of loop heat pipe with multi-layer metal foams as wick structure[J]. Applied Thermal Engineering, 2016, 94: 324-330. |
45 | 方朝斌. 基于金属纤维和粉末烧结的复合吸液芯的制造及毛细性能研究[D]. 广州: 华南理工大学, 2016. |
FANG Chaobin. Fabrication and capillary performance of composite wicks based on metal fiber and powder sintering[D]. Guangzhou: South China University of Technology, 2016. | |
46 | LING W S, ZHOU W, LIU R L, et al. Thermal performance of loop heat pipe with porous copper fiber sintered sheet as wick structure[J]. Applied Thermal Engineering, 2016, 108: 251-260. |
47 | MAYDANIK Y F, VERSHININ S V, CHERNYSHEVA M A. Experimental study of an ammonia loop heat pipe with a flat disk-shaped evaporator using a bimetal wall[J]. Applied Thermal Engineering, 2017, 126: 643-652. |
48 | 田巍. 超薄平板式环路热管的实验研究[D]. 武汉: 华中科技大学, 2019. |
TIAN Wei. The experimental study of loop heat pipe system with ultra-thin flat evaporator[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
49 | XU J Y, WANG D C, HU Z H, et al. Effect of the working fluid transportation in the copper composite wick on the evaporation efficiency of a flat loop heat pipe[J]. Applied Thermal Engineering, 2020, 178: 115515. |
50 | 胡卓焕, 王冬城, 许佳寅, 等. 双层毛细芯对环路热管传热性能的实验分析[J]. 热科学与技术, 2020, 19(2): 132-138. |
HU Zhuohuan, WANG Dongcheng, XU Jiayin, et al. Experimental analysis on heat transfer performance of loop heat pipes with double-layer wicks[J]. Journal of Thermal Science and Technology, 2020, 19(2): 132-138. | |
51 | SOLOMON A B, MAHTO A K, JOY R C, et al. Application of bio-wick in compact loop heat pipe[J]. Applied Thermal Engineering, 2020, 169: 114927. |
52 | PHAN N. Flat-evaporator-type loop heat pipe with hydrophilic polytetrafluoroethylene porous membranes[J]. Physics of Fluids, 2020, 32(4): 047108. |
53 | 蒋昊霖. 平板形碳纤维毛细芯环路热管工作性能可视化试验研究[D]. 济南: 山东大学, 2020. |
JIANG Haoseng. Research on the performance of visual flat carbon fiber capillary core loop heat pipe[D]. Jinan: Shandong University, 2020. | |
54 | 刘志春, 盖东兴, 刘伟, 等. 工质对平板形LHP运行特性影响的实验研究[J]. 工程热物理学报, 2010, 31(3): 487-490. |
LIU Zhichun, GAI Dongxing, LIU Wei, et al. Experimental study of effects of operating characteristics for a flat-type loop heat pipe with different working fluid[J]. Journal of Engineering Thermophysics, 2010, 31(3): 487-490. | |
55 | THARAYIL T, ASIRVATHAM L G, RAVINDRAN V, et al. Thermal performance of miniature loop heat pipe with graphene-water nanofluid[J]. International Journal of Heat and Mass Transfer, 2016, 93: 957-968. |
56 | ANAND A R, JAISWAL A, AMBIRAJAN A, et al. Experimental studies on a miniature loop heat pipe with flat evaporator with various working fluids[J]. Applied Thermal Engineering, 2018, 144: 495-503. |
57 | 张伟龙, 魏新利, 孟祥睿, 等. 热流密度及充灌率对板式蒸发器环路热管运行特性影响的实验研究[J]. 工程热物理学报, 2020, 41(8): 2020-2024. |
ZHANG Weilong, WEI Xinli, MENG Xiangrui, et al. Experimental study on the influence of heat flux and filling ratio on the operation characteristics of plate evaporator loop heat pipe[J]. Journal of Engineering Thermophysics, 2020, 41(8): 2020-2024. | |
58 | 赵同乐, 吴静怡, 张晋晋, 等. 充注量对水冷式环路热管性能影响的实验研究[J]. 制冷技术, 2017, 37(1): 18-22. |
ZHAO Tongle, WU Jingyi, ZHANG Jinjin, et al. Experimental research about influence of refrigerant charge on performance of water cooling loop heat pipe[J]. Chinese Journal of Refrigeration Technology, 2017, 37(1): 18-22. | |
59 | THARAYIL T, ASIRVATHAM L G, RAVINDRAN V, et al. Effect of filling ratio on the performance of a novel miniature loop heat pipe having different diameter transport lines[J]. Applied Thermal Engineering, 2016, 106: 588-600. |
60 | JUNG E G, BOO J H. Experimental observation of thermal behavior of a loop heat pipe with a bypass line under high heat flux[J]. Energy, 2020, 197: 117241. |
61 | JUNG E G, BOO J H. Overshoot elimination of the evaporator wall temperature of a loop heat pipe through a bypass line[J]. Applied Thermal Engineering, 2020, 165: 114594. |
62 | HE S, ZHOU P, LIU W, et al. Experimental study on thermal performance of loop heat pipe with a composite-material evaporator for cooling of electronics[J]. Applied Thermal Engineering, 2020, 168: 114897. |
63 | VENKATA KRISHNAN D, UDAYA KUMAR G, SURESH S, et al. Evaluating the scale effects of metal nanowire coatings on the thermal performance of miniature loop heat pipe[J]. Applied Thermal Engineering, 2018, 133: 727-738. |
64 | THARAYIL T, GODSON ASIRVATHAM L, RAJESH S, et al. Effect of nanoparticle coating on the performance of a miniature loop heat pipe for electronics cooling applications[J]. Journal of Heat Transfer, 2018, 140(2): 022401. |
65 | HE S, ZHAO J, LIU Z C, et al. Experimental investigation of loop heat pipe with a large squared evaporator for cooling electronics[J]. Applied Thermal Engineering, 2018, 144: 383-391. |
66 | CHERNYSHEVA M A, MAYDANIK Y F. Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2016, 92: 1026-1033. |
67 | CHERNYSHEVA M A, MAYDANIK Y F. Effect of liquid filtration in a wick on thermal processes in a flat disk-shaped evaporator of a loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2017, 106: 222-231. |
68 | FUKUSHIMA K, NAGANO H. New evaporator structure for micro loop heat pipes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1327-1334. |
69 | SHIOGA T, MIZUNO Y, NAGANO H. Operating characteristics of a new ultra-thin loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119436. |
70 | LI J, HONG F J, XIE R J, et al. Pore scale simulation of evaporation in a porous wick of a loop heat pipe flat evaporator using Lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2019, 102: 22-33. |
71 | ZHU L, YU J L. Simulation of steady-state operation of an ejector-assisted loop heat pipe with a flat evaporator for application in electronic cooling[J]. Applied Thermal Engineering, 2016, 95: 236-246. |
72 | MENG F X, ZHANG Q, DU S, et al. One-dimensional steady-state mathematical model of a novel loop heat pipe with liquid line capillary wick[J]. Energy Exploration & Exploitation, 2020, 38(1): 253-273. |
73 | DU S, ZHANG Q, HOU P L, et al. Experimental study and steady-state model of a novel plate loop heat pipe without compensation chamber for CPU cooling[J]. Sustainable Cities and Society, 2020, 53: 101894. |
74 | GABSI I, MAALEJ S, ZAGHDOUDI M C. Thermal performance modeling of loop heat pipes with flat evaporator for electronics cooling[J]. Microelectronics Reliability, 2018, 84: 37-47. |
75 | THARAYIL T, ASIRVATHAM L G, DAU M J, et al. Entropy generation analysis of a miniature loop heat pipe with graphene-water nanofluid: thermodynamics model and experimental study[J]. International Journal of Heat and Mass Transfer, 2017, 106: 407-421. |
76 | ZHU K, LI X Q, WANG Y B, et al. Dynamic performance of loop heat pipes for cooling of electronics[J]. Energy Procedia, 2017, 142: 4163-4168. |
77 | LI X Q, ZHU K, LI H L, et al. Performance comparison regarding loop heat pipes with different evaporator structures[J]. International Journal of Thermal Sciences, 2019, 136: 86-95. |
78 | JOSE J, BABY R. Enhancement of the thermal performance of a loop heat pipe using silica-water nanofluid[J]. Journal of Physics: Conference Series, 2019, 1355: 012010. |
79 | ZHANG Y X, LIU J Y, LIU L F, et al. Numerical simulation and analysis of heat leakage reduction in loop heat pipe with carbon fiber capillary wick[J]. International Journal of Thermal Sciences, 2019, 146: 106100. |
[1] | 徐茂淯, 陶帅, 齐聪, 梁林. 圆盘式环路热管的启动特性及温度波动[J]. 化工进展, 2023, 42(9): 4531-4537. |
[2] | 高婷婷, 蒋振, 吴晓毅, 郝婷婷, 马学虎, 温荣福. 微乳液脉动热管应用于锂离子电池的散热性能[J]. 化工进展, 2023, 42(3): 1167-1177. |
[3] | 郑宿正, 李南茜, 董德平. 平板陶瓷毛细芯环路热管的实验与仿真[J]. 化工进展, 2022, 41(7): 3510-3518. |
[4] | 张群力, 杨一雄, 张新超, 刘芳. 反冲洗降膜式污水源热泵机组供热性能实验测试[J]. 化工进展, 2022, 41(5): 2698-2705. |
[5] | 胡卓焕, 袁成伟, 许佳寅, 罗婷, 周志杰. 金属3D打印复合毛细芯孔径配比对环路热管特性影响[J]. 化工进展, 2022, 41(4): 1715-1724. |
[6] | 徐光明, 邵博, 李南茜, 赵晨阳, 郑宿正, 陆燕. 高性能柔性环路热管设计与热特性分析[J]. 化工进展, 2022, 41(10): 5228-5235. |
[7] | 刘超, 谢荣建, 李南茜, 徐光明, 董德平. 不同加热方式下环路热管蒸发器补偿器的可视化[J]. 化工进展, 2021, 40(5): 2401-2415. |
[8] | 刘广林, 徐进良, 苗政. 共冷凝器双循环有机朗肯发电系统㶲分析[J]. 化工进展, 2021, 40(12): 6656-6662. |
[9] | 李帅旗, 何世辉, 宋文吉, 冯自平. 基于蒸汽压缩技术的热泵蒸汽系统热力性能分析[J]. 化工进展, 2020, 39(9): 3583-3589. |
[10] | 刘超, 谢荣建, 董德平. 不同工质回路热管负载功率变化下的质量流量特性[J]. 化工进展, 2020, 39(8): 2980-2988. |
[11] | 鲁得浦,谢荣建,文佳佳. 多蒸发器低温回路热管的运行特性[J]. 化工进展, 2020, 39(4): 1235-1244. |
[12] | 郭浩,纪献兵,周儒鸿,彭家略,徐进良. 超亲水毛细芯环路热管启动及热性能分析[J]. 化工进展, 2020, 39(4): 1227-1234. |
[13] | 尹洪梅,骆超,赵军,王永真,胡立凯. 基于实验误差修正模型的闪蒸-双工质联合地热发电系统分析[J]. 化工进展, 2020, 39(1): 56-64. |
[14] | 张超,徐荣吉,陈静妍,吴青平. 非共沸不互溶混合工质脉动热管启动特性分析[J]. 化工进展, 2019, 38(12): 5279-5286. |
[15] | 刘广林, 曹泷, 刘欢, 苗政, 徐进良. 基于单螺杆膨胀机有机朗肯循环有无回热系统性能分析[J]. 化工进展, 2019, 38(06): 2626-2632. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |