化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5403-5414.DOI: 10.16085/j.issn.1000-6613.2020-2050
收稿日期:
2020-10-12
修回日期:
2021-01-05
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
成少安
作者简介:
李逸航(1997—),男,硕士研究生,研究方向为太阳能水蒸发。E-mail:基金资助:
LI Yihang(), DAI Shaoling, YU Zhen, GU Ruonan, CHENG Shao’an()
Received:
2020-10-12
Revised:
2021-01-05
Online:
2021-10-10
Published:
2021-10-25
Contact:
CHENG Shao’an
摘要:
海水淡化技术可有效解决现有的淡水资源短缺等问题,但受限于高成本、高能耗、低热效率等因素,传统海水淡化工艺难以进一步推广。近年来,太阳能海水淡化作为一种高效低廉的海水淡化技术正逐渐进入人们的视野,其中,太阳能膜蒸馏技术更是凭借着适用范围广、蒸发效率高、能耗低、成本低廉等诸多优点为众多学者所青睐。各国学者从宏观的系统结构到微观的光热材料等方面展开了大量的工作。但由于膜蒸馏固有的温度极化以及膜污染等问题,太阳能膜蒸馏技术仍然处于发展瓶颈中。本文按照太阳能引入膜蒸馏装置位置的不同,对现有的诸多太阳能膜蒸馏系统进行分类,并针对各类太阳能膜蒸馏系统的发展现状和技术瓶颈进行详细阐述。探讨了当前太阳能膜蒸馏技术的局限性及未来的挑战,以期为太阳能膜蒸馏系统的进一步发展及应用提供参考。
中图分类号:
李逸航, 戴绍铃, 于桢, 顾若男, 成少安. 太阳能膜蒸馏系统进展与展望[J]. 化工进展, 2021, 40(10): 5403-5414.
LI Yihang, DAI Shaoling, YU Zhen, GU Ruonan, CHENG Shao’an. Development and prospect of solar-driven membrane distillation system[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5403-5414.
光热膜材料 | 涂覆方式 | LEP /pis | TPF /% | 光强 | NaCl浓度 | ηI /% | ηt /% | 平均淡水 产率 /kg·m-2·h-1 |
---|---|---|---|---|---|---|---|---|
PTFE-官能化炭黑[ | 黏合剂 | 60 | 0.09~1sun | 40g·L-1 | 0.55 | |||
PVDF-炭黑[ | 蒸发涂层法 | 40 | 1.3sun | 1% | 74.6 | 2.7 | ||
PVDF-官能化炭黑[ | 黏合剂+静电纺丝 | 17.5sun | 1% | 21 | 5.38 | |||
PVDF-银纳米纤维[ | 非溶剂诱导的相转化工艺 | 104.3 | 104W·m-2紫外线 | 0.5mol·L-1 | 25.7 | |||
PVDF-银纳米颗粒[ | 静电纺丝 | 22 | 0.32W·cm-2紫外线 | 3.5% | 8.5~25.7 | |||
PTFE-氧化石墨烯/还原氧化石墨烯[ | 真空过滤 | 1sun | 4% | 0.72 | ||||
PVDF-HFP-Fe3O4[ | 真空过滤 | 1sun | 3.5% | 53 | 0.97 | |||
PVDF-掺锑的氧化锡(ATO)[ | 静电纺丝 | 22 | 116.1 | 100W红外辐射 | 3.5% | 27 | ||
PVDF-银纳米颗粒[ | 0~0.7sun | 0.5mol·L-1 | — | 53 | 2.5~3.5 | |||
铂纳米片+泡沫镍[ | 热分解法 | 107 | 700000lx LED | 5g·L-1 | ||||
PVDF-聚多巴胺(PDA)[ | 物理涂覆 | 0.75sun | 0.5mol·L-1 | 45 | 0.49 |
表1 双功能膜增强型太阳能膜蒸馏文献及性能统计
光热膜材料 | 涂覆方式 | LEP /pis | TPF /% | 光强 | NaCl浓度 | ηI /% | ηt /% | 平均淡水 产率 /kg·m-2·h-1 |
---|---|---|---|---|---|---|---|---|
PTFE-官能化炭黑[ | 黏合剂 | 60 | 0.09~1sun | 40g·L-1 | 0.55 | |||
PVDF-炭黑[ | 蒸发涂层法 | 40 | 1.3sun | 1% | 74.6 | 2.7 | ||
PVDF-官能化炭黑[ | 黏合剂+静电纺丝 | 17.5sun | 1% | 21 | 5.38 | |||
PVDF-银纳米纤维[ | 非溶剂诱导的相转化工艺 | 104.3 | 104W·m-2紫外线 | 0.5mol·L-1 | 25.7 | |||
PVDF-银纳米颗粒[ | 静电纺丝 | 22 | 0.32W·cm-2紫外线 | 3.5% | 8.5~25.7 | |||
PTFE-氧化石墨烯/还原氧化石墨烯[ | 真空过滤 | 1sun | 4% | 0.72 | ||||
PVDF-HFP-Fe3O4[ | 真空过滤 | 1sun | 3.5% | 53 | 0.97 | |||
PVDF-掺锑的氧化锡(ATO)[ | 静电纺丝 | 22 | 116.1 | 100W红外辐射 | 3.5% | 27 | ||
PVDF-银纳米颗粒[ | 0~0.7sun | 0.5mol·L-1 | — | 53 | 2.5~3.5 | |||
铂纳米片+泡沫镍[ | 热分解法 | 107 | 700000lx LED | 5g·L-1 | ||||
PVDF-聚多巴胺(PDA)[ | 物理涂覆 | 0.75sun | 0.5mol·L-1 | 45 | 0.49 |
44 | LINIC S, ASLAM U, BOERIGTER C, et al. Photochemical transformations on plasmonic metal nanoparticles[J]. Nature Materials, 2015, 14(6): 567-576. |
45 | GONG Biyao, YANG Huachao, WU Shenghao, et al. Graphene array-based anti-fouling solar vapour gap membrane distillation with high energy efficiency[J]. Nano-Micro Letters, 2019, 11(1): 1-14. |
46 | HAN Dongxiao, MENG Zhaoguo, WU Daxiong, et al. Thermal properties of carbon black aqueous nanofluids for solar absorption[J]. Nanoscale Research Letters, 2011, 6: 457. |
47 | CHEN Xiaoling, MUNJIZA A, ZHANG Kai, et al. Molecular dynamics simulation of heat transfer from a gold nanoparticle to a water pool[J]. Journal of Physical Chemistry C, 2014, 118(2): 1285-1293. |
1 | SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. |
2 | HAO Dandan, YANG Yudi, XU Bi, et al. Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10789-10797. |
48 | CHEN Meijie, HE Yurong, ZHU Jiaqi, et al. An experimental investigation on sunlight absorption characteristics of silver nanofluids[J]. Solar Energy, 2015, 115: 85-94. |
49 | POLITANO A, ARGURIO P, DI PROFIO G, et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials, 2017, 29(2): 1603504. |
50 | DAI Zhen, LI Zhihua, LI Li, et al. Synthesis and thermal properties of antimony doped tin oxide/waterborne polyurethane nanocomposite films as heat insulating materials[J]. Polymers for Advanced Technologies, 2011, 22(12): 1905-1911. |
3 | HAILEMARIAM R H, Yun Chul WOO, DAMTIE M M, et al. Reverse osmosis membrane fabrication and modification technologies and future trends: a review[J]. Advances in Colloid and Interface Science, 2020, 276: 102100. |
4 | LEE Kah Peng, ARNOT T C, MATTIA D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential[J]. Journal of Membrane Science, 2011, 370(1/2): 1-22. |
51 | Edison Huixiang ANG, TAN Yong Zen, CHEW Jia Wei. A three-dimensional plasmonic spacer enables highly efficient solar-enhanced membrane distillation of seawater[J]. Journal of Materials Chemistry A, 2019, 7(17): 10206-10211. |
52 | ZEINY A, JIN Haichuan, LIN Guiping, et al. Solar evaporation via nanofluids: a comparative study[J]. Renewable Energy, 2018, 122: 443-454. |
5 | KIM Sewoon, CHU Kyoung Hoon, AL-HAMADANI Y A J, et al. Removal of contaminants of emerging concern by membranes in water and wastewater: a review[J]. Chemical Engineering Journal, 2018, 335(9): 896-914. |
6 | QASIM M, BADRELZAMAN M, DARWISH N N, et al. Reverse osmosis desalination: a state-of-the-art review[J]. Desalination, 2019, 459(3): 59-104. |
7 | AL-OTHMAN A, TAWALBEH M, ASSAD M EL HAJ, et al. Novel multi-stage flash (MSF) desalination plant driven by parabolic trough collectors and a solar pond: a simulation study in UAE[J]. Desalination, 2018, 443(4): 237-244. |
8 | Henghua LÜ, WANG Yan, WU Lianying, et al. Numerical simulation and optimization of the flash chamber for multi-stage flash seawater desalination[J]. Desalination, 2019, 465(11): 69-78. |
9 | ZHANG Yonggang, PENG Yuelian, JI Shulan, et al. Review of thermal efficiency and heat recycling in membrane distillation processes[J]. Desalination, 2015, 367: 223-239. |
10 | ALKHUDHIRI A, DARWISH N, HILAL N. Membrane distillation: a comprehensive review[J]. Desalination, 2012, 287: 2-18. |
11 | ZHANG Jianhua, LI Junde, DUKE M, et al. Performance of asymmetric hollow fibre membranes in membrane distillation under various configurations and vacuum enhancement[J]. Journal of Membrane Science, 2010, 362(1): 517-528. |
12 | YANG Xing, WANG Rong, SHI Lei, et al. Performance improvement of PVDF hollow fiber-based membrane distillation process[J]. Journal of Membrane Science, 2011, 369(1): 437-447. |
13 | LAWSON K W, LLOYD D R. Membrane distillation[J]. Journal of Membrane Science, 1997, 124(1): 1-25. |
14 | ALKHUDHIRI A, DARWISH N, HILAL N. Produced water treatment: application of air gap membrane distillation[J]. Desalination, 2013, 309: 46-51. |
53 | LI Wenpeng, CHEN Yiqing, YAO Lei, et al. Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation[J]. Desalination, 2020, 478(12): 114288. |
54 | YE Haohui, LI Xiong, DENG Li, et al. Silver nanoparticle-enabled photothermal nanofibrous membrane for light-driven membrane distillation[J]. Industrial and Engineering Chemistry Research, 2019, 58(8): 3269-3281. |
55 | ZHANG Yong, LIU Lie, LI Kuiling, et al. Enhancement of energy utilization using nanofluid in solar powered membrane distillation[J]. Chemosphere, 2018, 212: 554-562. |
56 | POLITANO A, DI PROFIO G, FONTANANOVA E, et al. Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes[J]. Desalination, 2019, 451(2): 192-199. |
57 | HUANG Lu, PEI Junxian, JIANG Haifeng, et al. Water desalination under one sun using graphene-based material modified PTFE membrane[J]. Desalination, 2018, 442(12): 1-7. |
58 | HUANG Qinglin, GAO Shangpeng, HUANG Yan, et al. Study on photothermal PVDF/ATO nanofiber membrane and its membrane distillation performance[J]. Journal of Membrane Science, 2019, 582(3): 203-210. |
59 | WU Jinjian, ZODROW K R, SZEMRAJ P B, et al. Photothermal nanocomposite membranes for direct solar membrane distillation[J]. Journal of Materials Chemistry A, 2017, 5(45): 23712-23719. |
60 | DONGARE P D, ALABASTRI A, PEDERSEN S, et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6936-6941. |
61 | SAID I A, WANG Sen, LI Qilin. Field demonstration of a nanophotonics-enabled solar membrane distillation reactor for desalination[J]. Industrial and Engineering Chemistry Research, 2019, 58(40): 18829-18835. |
62 | TAN Yong Zen, Edison Huixiang ANG, CHEW Jia Wei. Metallic spacers to enhance membrane distillation[J]. Journal of Membrane Science, 2019, 572(10): 171-183. |
63 | WU Xuanhao, JIANG Qisheng, GHIM D, et al. Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process[J]. Journal of Materials Chemistry A, 2018, 6(39): 18799-18807. |
64 | GOSTOLI C, SARTI G C. Separation of liquid-mixtures by membrane distillation[J]. Journal of Membrane Science, 1989, 41: 211-224. |
65 | XU Zhenyuan, ZHANG Lenan, ZHAO Lin, et al. Ultrahigh-efficiency desalination: via a thermally-localized multistage solar still[J]. Energy and Environmental Science, 2020, 13(3): 830-839. |
66 | CHEN Meijie, HE Yurong, WANG Xinzhi, et al. Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating[J]. Solar Energy, 2018, 161(10): 17-24. |
67 | HE Yurong, CHEN Meijie, WANG Xinzhi, et al. Plasmonic multi-thorny gold nanostructures for enhanced solar thermal conversion[J]. Solar Energy, 2018, 171(6): 73–82. |
68 | LIU Yanlan, AI Kelong, LIU Jianhua, et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy[J]. Advanced Materials, 2013, 25(9): 1353-1359. |
69 | BLACK K C, YI Ji, RIVERA J G, et al. Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy[J]. Nanomedicine, 2013, 8(1): 17-28. |
70 | HONG Seonki, KIM Keum Yeon, WOOK Hwang Jin, et al. Attenuation of the in vivo toxicity of biomaterials by polydopamine surface modification[J]. Nanomedicine, 2011, 6(5): 793-801. |
71 | KU Sook Hee, Jungki RYU, HONG Seon Ki, et al. General functionalization route for cell adhesion on non-wetting surfaces[J]. Biomaterials, 2010, 31(9): 2535-2541. |
72 | JIANG Qisheng, DERAMI H G, GHIM D, et al. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation[J]. Journal of Materials Chemistry A, 2017, 5(35): 18397-18402. |
73 | SWAMINATHAN J, CHUNG Hyung Won, WARSINGER D M, et al. Energy efficiency of permeate gap and novel conductive gap membrane distillation[J]. Journal of Membrane Science, 2016, 502: 171-178. |
15 | SINGH D, PRAKASH P, SIRKAR K K. Deoiled produced water treatment using direct-contact membrane distillation[J]. Industrial & Engineering Chemistry Research, 2013, 52(37): 13439-13448. |
16 | BOUGUECHA S, HAMROUNI B, DHAHBI M. Small scale desalination pilots powered by renewable energy sources: case studies[J]. Desalination, 2005, 183(1): 151-165. |
17 | ALVES V D, COELHOSO I M. Orange juice concentration by osmotic evaporation and membrane distillation: a comparative study[J]. Journal of Food Engineering, 2006, 74(1): 125-133. |
18 | TOMASZEWSKA M, GRYTA M, MORAWSKI A W. Study on the concentration of acids by membrane distillation[J]. Journal of Membrane Science, 1995, 102: 113-122. |
19 | RIOYO J, ARAVINTHAN V, BUNDSCHUH J. The effect of "high-pH pretreatment” on RO concentrate minimization in a groundwater desalination facility using batch air gap membrane distillation[J]. Separation and Purification Technology, 2019, 227: 115699. |
20 | GARCÍA-PAYO M C, IZQUIERDO-GIL M A, FERNÁNDEZ-PINEDA C. Air gap membrane distillation of aqueous alcohol solutions[J]. Journal of Membrane Science, 2000, 169(1): 61-80. |
21 | NOOR I E, COENEN J, MARTIN A, et al. Performance assessment of chemical mechanical planarization wastewater treatment in nano-electronics industries using membrane distillation[J]. Separation and Purification Technology, 2020, 235: 116201. |
22 | LOUSSIF N, ORFI J. Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations[J]. Membrane Water Treatment, 2016, 7(1): 71-86. |
23 | ZHAO Shuaifei, FERON P H M, XIE Zongli, et al. Condensation studies in membrane evaporation and sweeping gas membrane distillation[J]. Journal of Membrane Science, 2014, 462: 9-16. |
24 | SUK D E, MATSUURA T, PARK Ho Bum, et al. Development of novel surface modified phase inversion membranes having hydrophobic surface-modifying macromolecule (NSMM) for vacuum membrane distillation[J]. Desalination, 2010, 261(3): 300-312. |
25 | M A E-R ABU-ZEID, ZHANG Yaqin, DONG Hang, et al. A comprehensive review of vacuum membrane distillation technique[J]. Desalination, 2015, 356: 1-14. |
26 | FATH H E S, ELSHERBINY S M, HASSAN A A, et al. PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs[J]. Desalination, 2008, 225(1/2/3): 58-69. |
27 | NAKOA K, RAHAOUI K, DATE A, et al. An experimental review on coupling of solar pond with membrane distillation[J]. Solar Energy, 2015, 119: 319-331. |
28 | TYAGI V V, KAUSHIK S C, TYAGI S K. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1383-1398. |
29 | SCHWANTES R, CIPOLLINA A, GROSS F, et al. Membrane distillation: solar and waste heat driven demonstration plants for desalination[J]. Desalination, 2013, 323: 93-106. |
30 | HUGHES A J, O’DONOVAN T S, MALLICK T K. Experimental evaluation of a membrane distillation system for integration with concentrated photovoltaic/thermal (CPV/T) energy[J]. Energy Procedia, 2014, 54: 725-733. |
31 | SOOMRO M I, KIM Woo-Seung. Parabolic-trough plant integrated with direct-contact membrane distillation system: concept, simulation, performance, and economic evaluation[J]. Solar Energy, 2018, 173(7): 348-361. |
32 | RALUY R G, SCHWANTES R, SUBIELA V J, et al. Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain)[J]. Desalination, 2012, 290: 1-13. |
33 | BANAT F, JUMAH R, GARAIBEH M. Exploitation of solar energy collected by solar stills for desalination by membrane distillation[J]. Renewable Energy, 2002, 25(2): 293-305. |
34 | KALOGIROU S A. Use of TRYNSYS for modeling and simulation of a hybrid PV-thermal solarsys tem for cyprus[J]. Renewable Energy, 2001, 23: 247-260. |
35 | LI Guiqiang, SHITTU S, DIALLO T M O, et al. A review of solar photovoltaic-thermoelectric hybrid system for electricity generation[J]. Energy, 2018, 158: 41-58. |
36 | KOSCHIKOWSKI J, WIEGHAUS M, ROMMEL M, et al. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas[J]. Desalination, 2009, 248(1/2/3): 125-131. |
37 | AL-HRARI M, CEYLAN İ, NAKOA K, et al. Concentrated photovoltaic and thermal system application for fresh water production[J]. Applied Thermal Engineering, 2020, 171(7): 115054. |
38 | GUILLÉN-BURRIEZA E, BLANCO J, ZARAGOZA G, et al. Experimental analysis of an air gap membrane distillation solar desalination pilot system[J]. Journal of Membrane Science, 2011, 379(1/2): 386-396. |
39 | CHIAVAZZO E, MORCIANO M, VIGLINO F, et al. Passive solar high-yield seawater desalination by modular and low-cost distillation[J]. Nature Sustainability, 2018, 1(12): 763-772. |
40 | XUE Guobin, CHEN Qian, LIN Shizhe, et al. Highly efficient water harvesting with optimized solar thermal membrane distillation device[J]. Global Challenges, 2018, 2(5/6): 1800001. |
41 | HUANG Lu, JIANG Haifeng, WANG Yipu, et al. Enhanced water yield of solar desalination by thermal concentrated multistage distiller[J]. Desalination, 2020, 477(11): 114260. |
42 | WANG Wenbin, SHI Yusuf, ZHANG Chenlin, et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation[J]. Nature Communications, 2019, 10(1): 3012. |
43 | GAO Yi, YUAN Zhe, GAO Shiwu. Semiclassical approach to plasmon-electron coupling and landau damping of surface plasmons[J]. Journal of Chemical Physics, 2011, 134(13): 134702. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[3] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[4] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[5] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[6] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[7] | 宗悦, 张瑞君, 高珊珊, 田家宇. “特殊稳定型”压力驱动薄膜复合(TFC)脱盐膜的研究进展[J]. 化工进展, 2023, 42(4): 2058-2067. |
[8] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[9] | 杜涛, 马进伟, 陈茜茜, 方浩, 陈秉章, 陈厚仁. PV/T模块复合冷却模式性能对比测试与数值模拟分析[J]. 化工进展, 2023, 42(2): 722-730. |
[10] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[11] | 韩丽, 李望良, 李艳香, 安高军, 鲁长波. 纤维状钙钛矿太阳能电池研究进展[J]. 化工进展, 2023, 42(10): 5135-5146. |
[12] | 毛停停, 李双福, 黄李茗铭, 周川玲, 韩凯. 面向水处理与有机溶剂回收的太阳能界面蒸发系统与材料[J]. 化工进展, 2023, 42(1): 178-193. |
[13] | 孙孟威, 刘壮, 谢锐, 巨晓洁, 汪伟, 褚良银. 镧离子插层MoS2膜的制备及印染高盐水处理[J]. 化工进展, 2023, 42(1): 346-353. |
[14] | 白浩良, 王晨, 卢静, 康雪. 聚光光伏系统太阳能电池散热技术及发展现状[J]. 化工进展, 2023, 42(1): 159-177. |
[15] | 寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |