1 | XU Zhongming, FANG Chenhao, MA Tieju. Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction[J]. Energy, 2020, 191: 116462. | 2 | REN Tao, PATEL Martin K, BLOK Kornelis. Steam cracking and methane to olefins: energy use, CO2 emissions and production costs[J]. Energy, 2008, 33(5): 817-833. | 3 | XIANG Dong, QIAN Yu, MAN Yi, et al. Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process[J]. Applied Energy, 2014, 113: 639-647. | 4 | DING Yanjun, HAN Weijian, CHAI Qinhu, et al. Coal-based synthetic natural gas (SNG): a solution to China’s energy security and CO2 reduction?[J]. Energy Policy, 2013, 55: 445-453. | 5 | JARAMILLO Paulina, Michael GRIFFIN W, Scott MATTHEWS H. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas[J]. Environmental Science & Technology, 2008, 42(20): 7559-7565. | 6 | Xunmin OU, YAN Xiaoyu, ZHANG Xiliang. Using coal for transportation in China: life cycle GHG of coal-based fuel and electric vehicle, and policy implications[J]. International Journal of Greenhouse Gas Control, 2010, 4(5): 878-887. | 7 | YANG Chijen. Coal chemicals: China's high-carbon clean coal programme?[J]. Climate Policy, 2017, 17(4): 470-475. | 8 | 朱兵, 张博, 周文戟, 等. 我国甲醇行业CO2的排放评估与对策[J]. 清华大学学报(自然科学版), 2010, 50(5): 686-690. | 8 | ZHU Bing, ZHANG Bo, ZHOU Wen Ji, et al. Assessment of CO2 emission in China’s methanol industry[J]. Journal of Tsinghua University(Science and Technology), 2010, 50(5): 686-690. | 9 | XU Xiaoying, LIU Yuan, ZHANG Fan, et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today, 2017, 298: 61-68. | 10 | TIAN Peng, WEI Yingxu, YE Mao, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. | 11 | YANG Yong, XU Jian, LIU Zhenyu, et al. Progress in coal chemical technologies of China[J]. Reviews in Chemical Engineering, 2020, 36(1): 21-66. | 12 | ROODE-GUTZMER Quirina I, KAISER Doreen, BERTAU Martin. Renewable methanol synthesis[J]. Chembioeng Reviews, 2019, 6(6): 209-236. | 13 | YANG Miao, FAN Dong, WEI Yingxu, et al. Recent progress in methanol-to-olefins (MTO) catalysts[J]. Advanced Materials, 2019,31(50): 1902181. | 14 | GOGATE Makarand R. Methanol-to-olefins process technology: current status and future prospects[J]. Petroleum Science and Technology, 2019, 37(5): 559-565. | 15 | 崔普选. 煤基甲醇制烯烃工艺技术发展现状[J]. 现代化工, 2020, 40(4): 5-9. | 15 | CUI Puxuan. Development situation of process technologies for coal-based methanol olefins[J]. Modern Chemical Industry, 2020, 40(4): 5-9. | 16 | ZANG Kailu, ZHANG Wenna, HUANG Jindou, et al. First molecule with carbon-carbon bond in methanol-to-olefins process[J]. Chemical Physics Letters, 2019, 737(16): 136844. | 17 | LIU Hongxing, XIE Zaiku, ZHAO Guoliang. The progress of SINOPEC methanol-to-olefins (S-MTO) technology[J]. DGMK Tagungsbericht, 2013(2): 89-92. | 18 | XIE Kechang, LI Wenying, ZHAO Wei. Coal chemical industry and its sustainable development in China[J]. Energy, 2010, 35(11): 4349-4355. | 19 | CHEN Guangbo, WATERHOUSE Geoffrey I. N., SHI Run, et al. From solar energy to fuels: recent advances in light-driven Cchemistry[J]. Angewandte Chemie: International Edition, 2019, 58(49): 17528-17551. | 20 | SEDOV I V, MAKARYAN I A, BERZIGIYAROV P K, et al. Development of technologies for more efficient deep processing of natural gas[J]. Russian Journal of Applied Chemistry, 2018, 91(12): 1922-1936. | 21 | LI Hengchong, YANG Siyu, ZHANG Jun, et al. Analysis of rationality of coal-based synthetic natural gas (SNG) production in China[J]. Energy Policy, 2014, 71: 180-188. | 22 | JI Keming, MENG Fanhui, XUN Jiayao, et al. Carbon deposition behavior of Ni catalyst prepared by combustion method in slurry methanation reaction[J]. Catalysts, 2019, 9(7): 570. | 23 | YE Songshou, GUO Jiawei, WANG Yanbing, et al. Effect of sodium content on the interaction between Ni and support and catalytic performance for syngas methanation over Ni/Zr-Yb-O catalysts[J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2705-2711. | 24 | RONSCH Stefan, SCHNEIDER Jens, MATTHISCHKE Steffi, et al. Review on methanation: from fundamentals to current projects[J]. Fuel, 2016, 166: 276-296. | 25 | WANG Baowei, WANG Chengyu, YU Wenxia, et al. Effects of preparation method and Mo2C loading on the Mo2C/ZrO2 catalyst for sulfur-resistant methanation[J]. Molecular Catalysis, 2020, 482: 110668. | 26 | TAO Miao, MENG Xin, LV Yuhao, et al. Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA-15 for CO methanation reaction[J]. Fuel, 2016, 165: 289-297. | 27 | CHEN Min, GUO Zhanglong, ZHENG Jian, et al. CO2 selective hydrogenation to synthetic natural gas (SNG) over four nano-sized Ni/ZrO2 samples: ZrO2 crystalline phase & treatment impact[J]. Journal of Energy Chemistry, 2016, 25(6): 1070-1077. | 28 | LI Le, ZHENG Jian, LIU Yuefeng, et al. Impacts of SiC carrier and nickel precursor of NiLa/support catalysts for CO2 selective hydrogenation to synthetic natural gas (SNG)[J]. Chemistryselect, 2017, 2(13): 3750-3757. | 29 | CHEN Zhaohui, HOU Yilin, YANG Yifeng, et al. A multi-stage fluidized bed strategy for the enhanced conversion of methanol into aromatics[J]. Chemical Engineering Science, 2019, 204: 1-8. | 30 | CHEN Zhiyang, NI Youming, ZHI Yuchun, et al. Coupling of methanol and carbon monoxide over H-ZSM-5 to form aromatics[J]. Angewandte Chemie: International Edition, 2018, 57(38): 12549-12553. | 31 | XU Yuebing, SHI Chengming, LIU Bing, et al. Selective production of aromatics from CO2[J]. Catalysis Science & Technology, 2019, 9(3): 593-610. | 32 | BI Yi, WANG Yingli, WEI Yingxu, et al. Improved selectivity toward light olefins in the reaction of toluene with methanol over the modified HZSM-5 catalyst[J]. ChemCatChem, 2014, 6(3): 713-718. | 33 | DOMBEK B D. Direct routes from synthesis gas to ethylene glycol[J]. Journal of Chemical Education, 1986, 63(3): 210-212. | 34 | KNIFTON John F. Ethylene glycol from synthesis gas via ruthenium melt catalysis[J]. Journal of the American Chemical Society, 1981, 103(13): 3959-3961. | 35 | 周张锋, 李兆基, 潘鹏斌, 等. 煤制乙二醇技术进展[J]. 化工进展, 2010, 29(11): 2003-2009. | 35 | ZHOU Zhangfeng, LI Zhaoji, PAN Pengbin, et al. Progress in technologies of coal-based ethylene glycol synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2003-2009. | 36 | WANG Zhiqiao, XU Zhongning, PENG Siyan, et al. New catalysts for coal to ethylene glycol[J]. Chinese Journal of Chemistry, 2017, 35(6): 759-768. | 37 | SONG Heyuan, JIN Ronghua, KANG Meirong, et al. Progress in synthesis of ethylene glycol through Cchemical industry routes[J]. Chinese Journal of Catalysis, 2013, 34(6): 1035-1050. | 38 | MASUDA Takashi, MURATA Kazuhisa, MATSUDA Akio. A new aspect of the pressure effect in syngas conversion to ethylene glycol[J]. Bulletin of the Chemical Society of Japan, 1986, 59(4): 1287-1289. | 39 | YANG Qingchun, ZHU Shun, YANG Qing, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814. |
|