化工进展 ›› 2021, Vol. 40 ›› Issue (1): 6-20.DOI: 10.16085/j.issn.1000-6613.2020-0822
收稿日期:
2020-05-14
出版日期:
2021-01-05
发布日期:
2021-01-12
作者简介:
杜泽学(1964—),工学博士,教授级高级工程师,中国石化新能源研究所副所长,研究方向为可再生能源技术。E-mail:Received:
2020-05-14
Online:
2021-01-05
Published:
2021-01-12
摘要:
车用燃料电池系统成本的不断降低和电堆耐久性能的提高促进了燃料电池汽车的快速发展。燃料电池堆是车用燃料电池系统的核心单元,电催化剂、质子交换膜和气体扩散层是制造燃料电池堆的基本材料,决定了电堆的成本和耐久性能。本文从应用角度对国内外电催化剂、质子交换膜和气体扩散层制造技术的应用发展进行了回顾,分析了国内发展燃料电池电催化剂、质子交换膜和气体扩散层制造技术的重要性和国内产业化水平落后的原因,提出了发展的建议,为这些关键材料加快国产化提供参考,以期尽快提高国产燃料电池堆耐久性能、降低制造成本。
中图分类号:
杜泽学. 车用燃料电池关键材料技术研发应用进展[J]. 化工进展, 2021, 40(1): 6-20.
Zexue DU. Application advances of manufacturing technology for key materials of vehicle fuel cell stack[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6-20.
整车 | 电堆及运行配套 | 燃料电池 | |||||
---|---|---|---|---|---|---|---|
项目 | 成本 /% | 项目 | 成本 /% | 项目 | 成本 /% | ||
电堆 | 40.9 | 燃料电池 | 60.8 | 催化剂 | 44.9 | ||
储氢瓶 | 13.8 | 氢气供给及安全监测 | 4.5 | 质子交换膜 | 10.3 | ||
电机 | 8.6 | 空气供给 | 15.3 | 扩散层 | 4.8 | ||
蓄电池 | 3.7 | 热管理系统 | 7.8 | 双极板 | 27.8 | ||
制动系统 | 2 | 加湿及水管理系统 | 3.1 | 膜电极支撑板 | 4.6 | ||
变速器 | 1 | 控制系统 | 3.6 | 其他 | 7.6 | ||
车架及其他 | 30 | 其他 | 4.9 |
表1 美国能源部发布的燃料电池汽车及电堆系统成本分布
整车 | 电堆及运行配套 | 燃料电池 | |||||
---|---|---|---|---|---|---|---|
项目 | 成本 /% | 项目 | 成本 /% | 项目 | 成本 /% | ||
电堆 | 40.9 | 燃料电池 | 60.8 | 催化剂 | 44.9 | ||
储氢瓶 | 13.8 | 氢气供给及安全监测 | 4.5 | 质子交换膜 | 10.3 | ||
电机 | 8.6 | 空气供给 | 15.3 | 扩散层 | 4.8 | ||
蓄电池 | 3.7 | 热管理系统 | 7.8 | 双极板 | 27.8 | ||
制动系统 | 2 | 加湿及水管理系统 | 3.1 | 膜电极支撑板 | 4.6 | ||
变速器 | 1 | 控制系统 | 3.6 | 其他 | 7.6 | ||
车架及其他 | 30 | 其他 | 4.9 |
1 | FURAT D, MARTIN A, SHAFIULLAH G M. Hydrogen production for energy: an overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. |
2 | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. |
SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J].Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477. | |
3 | 王赓, 郑津洋, 蒋利军, 等. 中国氢能发展的思考[J]. 科技导报, 2017, 35(22): 105-110. |
WANG Geng, ZHENG Jinyang, JIANG Lijun, et al. The development of hydrogen energy in China[J]. Sciences & Technology Review, 2017, 35(22): 105-110. | |
4 | TIAGO S, FELIPE L, MARIO E S M, et al. Production, storage, fuel stations of hydrogen and its utilization in automotive applications— A review[J]. International Journal of Hydrogen Energy, 2017, 42(39): 24597-24611. |
5 | 周晖雨, 范芷萱. 燃料电池发展史: 从阿波罗登月到丰田Mirai[J]. 能源, 2019(7): 94-96. |
ZHOU Yuhui, FAN Zhixuan. History of fuel cell: from Appollo to Mirai of Toyota[J]. Energy, 2019(7): 94-96. | |
6 | 刘宗巍, 史天泽, 郝瀚, 等. 中国燃料电池汽车发展问题研究[J]. 汽车技术, 2018(1): 1-9. |
LIU Zongwei, SHI Tianze, HAO Han, et al. Research on main problems associated with development of fuel cell vehicle in China[J]. Automobile Technology, 2018(1): 1-9. | |
7 | BRUNO G P, SHYAM S K, IAIN S. Current status of automotive fuel cells for sustainable transport[J]. Current Opinion in Electrochemistry, 2019, 16: 90-95. |
8 | NANCY L G, DIMITRIOS C P, JOSEPH M S. Hydrogen and fuel cell technology: progress, challenges, and future directions[J]. Energy Procedia, 2012(28): 2-11. |
9 | 北极星氢能网. 销量增长近8成!2019燃料电池汽车销量2737辆[EB/OL]. , 2020-01-14. |
QN. BJX.com.cn. Sales increase nearly80%. The sales of fuel cell vehicles is 2737 in 2019[EB/OL]. , 2020-01-14. | |
10 | 王薛超, 金茂菁. 燃料电池汽车国内外发展现状及对策建议[J]. 科技中国, 2019(5): 6-8. |
WANG Xuechao, JIN Maojing. Review of the development of fuel cell vehicles at home and abroad[J]. Chinese Science and Technology, 2019(5): 6-8. | |
11 | 万钢. 如何解决燃料电池汽车发展的七大问题[J]. 汽车纵横, 2018(8): 20-23. |
WAN Gang. How to solve the seven problems in the development of fuel cell vehicles[J]. Auto Review, 2018(8): 20-23. | |
12 | 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2/3): 310-320. |
WANG Cheng, WANG Shubo, ZHANG Jianbo, et al. The key materials and components for proton exchange membrane fuel cell[J]. Progress in Chemistry, 2015, 27(2/3): 310-320. | |
13 | 侯明, 邵志刚, 衣宝廉. 车用燃料电池电堆比功率提升的技术途径探讨[J]. 中国工程科学, 2019, 21(3): 84-91. |
HOU Ming, SHAO Zhigang, YI Baolian. Technological approaches to increasing specific power of vehicular fuel cell stacks[J]. Strategic Study of CAE, 2019, 21(3): 84-91. | |
14 | 李存璞, 陈嘉佳, 李莉, 等. 燃料电池关键材料与进展[J]. 科技导报, 2017, 35(8): 19-25. |
LI Cunpu, CHEN Jiajia, LI Li, et al. Key materials and progress of fuel cells[J]. Sciences & Technology Review, 2017, 35(8): 19-25. | |
15 | 侯明, 邵志刚, 俞红梅, 等. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150. |
HOU Ming, SHAO Zhigang, YU Hongmei, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Sciences & Technology Review, 2020, 38(1): 137-150. | |
16 | 姜保成, 姜澜. 负载型铂族金属催化剂研究进展[J]. 贵金属, 2018, 39(S1): 126-130. |
JIANG Baocheng, JIANG Lan. Research progress of supported platinum group metal catalysts[J]. Precious Metals, 2018, 39(S1): 126-130. | |
17 | 俞红梅, 衣宝廉. 车用燃料电池现状与电催化[J]. 中国科学: 化学, 2012, 42(4): 480- 494. |
YU Hongmei, YI Baolian. Current status of vehicle fuel cells and electrocatalysis[J]. Scientia Sinica Chimica, 2012, 42(4): 480-494. | |
18 | 李静, 冯欣, 魏子栋. 铂基燃料电池氧还原反应催化剂研究进展[J]. 电化学, 2018, 24(6): 589-601. |
LI Jing, FENG Xin, WEI Zidong. Recent progress in Pt-based catalysts for oxygen reduction reaction[J]. Journal of Electrochemistry, 2018, 24(6): 589-601. | |
19 | EHTESHAMI S M M, CHAN S H.A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells[J]. Electrochimica Acta, 2013, 93:334-345. |
20 | DOE. DOE hydrogen and fuel cells program record: fuel cell system cost 2015 [R]. |
Department of Energy U. S., 2015. | |
21 | MARTIN P, MONIKA D, KAREL B. Review of the experimental study and prediction of Pt-based catalyst degradation during PEM fuel cell operation[J]. Current Opinion in Electrochemistry, 2020, 20: 20-27. |
22 | KOTARO S, KURIAN A K, RADOSLAV R A. Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells[J]. Current Opinion in Electrochemistry, 2020, 21(6): 368-375. |
23 | DOE, The Fuel Cell Technical Team.Fuel cell technical team roadmap [EB/OL]. . |
24 | CHARLES S JÜRGEN S. Recent advances in fuel cell technology at Ballard[J]. Journal of Power Sources, 2008, 176(2): 468-476. |
25 | ZHANG J, SASAKI K, SUTTER E, et al. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315: 220-222. |
26 | YANG S, TAK Y J, KIM J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catalysis, 2017, 7(2) : 1301-1307. |
27 | LUJIN P, SEBASTIAN O, FABIO D, et al. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells[J]. Current Opinion in Electrochemistry, 2019, 18(12): 61-71. |
28 | HUBERT A G, SHYAM S K, BHASKAR S, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35. |
29 | 朱红, 骆明川, 蔡业政, 等. 核壳结构催化剂应用于质子交换膜燃料电池氧还原的研究进展[J]. 物理化学学报, 2016, 32 (10): 2462-2474. |
ZHU Hong, LUO Mingchuan, CAI Yezheng, et al. Core-shell structured electrocatalysts for the cathodic oxygen reduction reaction in proton exchange membrane fuel cells[J]. Acta Phys-Chim Sin., 2016, 32 (10): 2462-2474. | |
30 | 魏子栋. 质子交换膜燃料电池催化剂性能增强方法研究进展[J]. 化工进展, 2016, 35(9): 2629-2639. |
WEI Zidong. Advances of the catalytic performance enhancement for proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2629-2639. | |
31 | SHUAIBA S, KEE S L, WAI Y W, et al. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(16): 7823-7854. |
32 | MARYAM K, ZHANG J, LUO Y, et al. Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2018, 27(4): 1124-1139. |
33 | 张镇, 吴辉. 国内外质子交换膜燃料电池关键材料的性能和成本分析[J]. 电池工业, 2019, 23(6):305-310. |
ZHANG Zhen, WU Hui. A literature review on performance and cost analysis of key materials for PEMFC[J]. Chinese Battery Industry, 2019, 23(6): 305-310. | |
34 | 马爱增. 中国催化重整技术进展[J]. 中国科学: 化学, 2014, 44(1): 25-39. |
MA Aizeng. Development and commercial application of naphtha catalytic reforming technology in China[J]. Scientia Sinica Chimica, 2014, 44(1): 25-39. | |
35 | ADAMS D P. Reactive multilayers fabricated by vapor deposition: a critical review[J]. Thin Solid Films, 2015, 576: 98-128. |
36 | ALEXEEVA O K, FATEEV V N. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3373-3386. |
37 | 李丽, 金环年, 胡云剑. 加氢处理催化剂制备技术研究进展[J]. 化工进展, 2013, 32(7): 1564-1569. |
LI Li, JIN Huannian, HU Yunjian. Research progress in preparation techniques of hydrotreating catalysts[J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1564-1569. | |
38 | 索掌怀, 徐秀峰, 马华宪, 等. 制备方法对Ni/MgO/Al2O3 在甲烷与二氧化碳重整反应中催化性能的影响[J]. 催化学报, 2009, 21(5): 411-414. |
SUO Zhanghuai, XU Xiufeng, MA Huaxian, et al. Influence of preparation methods on catalytic performance of Ni/MgO/Al2O3 in CO2 reforming of CH4[J]. Chinese Journal of Catalysis, 2009, 21(5):411-414. | |
39 | WANG Y J, FANG B Z, LI H, et al. Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells[J]. Progress in Materials Science, 2016, 82: 445-498. |
40 | PAN L J, SEBASTIAN O, FABIO D, et al. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells[J]. Current Opinion in Electrochemistry, 2019, 18: 61-71. |
41 | STAMENKOVIC V, MUN B S, MAYRHOFER K J J, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie, 2006, 118(18): 2963-2967. |
42 | STAMENKOVIC V R, MARKOVIC N M. Oxygen reduction on platinum bimetallic alloy catalysts[M]// Handbook of Fuel Cells, John Wiley & Sons, Inc., 2010. . |
43 | SHAO M, SASAKI K, MARINKOVIC N S, et al. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports[J]. Electrochemistry Communications, 2007, 9(12): 2848-2853. |
44 | SRIVASTAVA R, MANI P, HAHN N, et al. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles[J]. Angewandte Chemie International Edition, 2007, 46(47): 8988-8991. |
45 | VANDAN H E, BEKKUM H V. Preparation of platinum on activated carbon [J]. J. Catalysis, 1991, 131: 335-349. |
46 | PETROW H G, ALLEN R J. Catalytic platinum metal particles on a subs-trate and method of preparing the catalyst: US3992331[P]. 1976-11-16. |
47 | YOSHITAKE T, SHIMAKAWA Y, KUROSHIMA S, et al. Interconnection of nanostructures using carbon nanotubes[J]. Physica B: Condensed Matter, 2002, 323(1/2/3/4): 124-126. |
48 | WANG X, HSING I M. Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells[J]. Electrochimica Acta, 2002, 47(18):2981-2987. |
49 | LIU Z L, LING X Y, SU X D, et al. Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells[J]. J Power Sources, 2005, 149(1): 1-71. |
50 | LIU Z L, GUO B, HONG L, et al. Microwave heated polyol synthesis of carbon-supported Pt-Sn nanoparticles for methanol electrooxidation [J]. Electrochemistry Communications, 2006, 8(1): 83-90. |
51 | SHIMAZAKI Y, KOBAYASHI Y, YOSHIO Y, et al. Preparation and characterization of aqueous colloids of Pt-Ru nanoparticles[J]. J. Colloid and Interface Science, 2005, 292(1): 122-126. |
52 | LIAO S J, HOLMES K A, TSAPRAILIS H, et al. High performance Pt-Ru-Ir catalysts supported on carbon nanotubes for the anodic oxidation of methanol[J]. J. Am. Chem. Soc., 2006, 128 (11): 3504-3505. |
53 | KIM T, TAKAHASHI M, NAGAI M, et al. Preparation and characterization of carbon supported Pt and Pt-Ru alloy catalysts reduced by alcohol for polymer electrolyte fuel cell [J]. Electrochimica Acta, 2004, 50(2/3): 817-821. |
54 | 廖世军, 李映伟. 有机溶胶法制备高分散纳米催化剂的研究进展[J]. 石油化工, 2009, 38(5): 469-475. |
LIAO Shijun, LI Yingwei. Advance in preparation of highly dispersed nanocatalyst by organic colloid method[J]. Petrochemical Technology, 2009, 38(5): 469-475. | |
55 | BONNEMANN H, BRINKMANN R, BRITZ P, et al. Nanoscopic Pt-bimetal colloids as precursors for PEM fuel cell catalysts[J]. J. New Materials for Electrochemical Systems, 2000, 3(3): 199-206. |
56 | PAULUS U A, ENDRUSCHATU, FELDMEYER G J, et al. New Pt-Ru alloy colloids as precursors for fuel cell catalysts[J]. J. Catal., 2000, 195(2): 383-393. |
57 | FIEVET F, LAGIER J P, BLIN B., et al.Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles[J]. Solid State Ionics, 1989, 32/33(2/3): 198-205. |
58 | SUN S, MURRAY C B, WELLER D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science, 2000, 287: 1989-1992. |
59 | SANTIAGO E I, VARANDA L C, VILLULLAS H M. Carbon supported Pt-Co catalysts prepared by a modified polyol process ascathodes for PEM fuel cells[J]. J. Phys. Chem., 2007, 111: 3146-3151. |
60 | LIAO Shijun, HOLMES K, TSAPRAILIS H, et al. High performance Pt-Ru-Ir catalysts supported on carbon nanotubes for the anodic oxidation of methanol[J]. J. Am. Chem. Soc., 2006, 128(11): 3504-3505. |
61 | 侯长军, 兰作平, 霍丹群. 微乳法制备超细级纳米材料的研究现状与进展[J]. 材料导报, 2007, 21(11): 14-16. |
HOU Changjun, LAN Zuoping, HUO Danqun. Progress in study on preparation of ultrafine namomaterial by microemulsion method[J]. Sciences & Technology Review, 2007, 21(11): 14-16. | |
62 | 唐振艳, 赵云昆, 张爱敏, 等. 液相化学法制备贵金属纳米颗粒的研究进展[J]. 材料导报, 2008, 22(12): 66-70. |
TANG Zhenyan, ZHAO Yunkun, ZHANG Aimin, et al. Research progress in precious metal nanoparticles prepared by chemical liquid-phase methods[J]. Sciences & Technology Review, 2008, 22(12): 66-70. | |
63 | 杨思源, 戴伟, 傅吉全, 等. 微乳液法制备纳米催化剂及其在加氢反应中应用的研究进展[J]. 石油化工, 2012, 41(4): 471-476. |
YANG Siyuan, DAI Wei, FU Jiquan, et al. Reseach progress in preparation of ultrafine namocatalysts by microemulsion method and their application to hydrogenation[J]. Petrochemical Technology, 2012, 41(4): 471-476. | |
64 | CHEN D H, YEH J J, HUANG T. Sythesis of platinum ultrafine particles in AOT reverse micelles[J]. J . Colloid and Interface Science, 1999, 215(1): 159-166. |
65 | ESCUDERO M J, HONTANON E, SCHWARTZ S, et al. Development and performance characterisation of new electrocatalysts for PEMFC [J] . J. Power Sources, 2002, 106(1/2): 206-214. |
66 | MITSUHIRO I, HIROSHI S, TOMOHITO K, et al. Preparation and physical and electrochemical properties of carbon-supported Pt-Ru (Pt-Ru/C) samples using the polygonal barrel-sputtering method[J]. The Journal of Physical Chemistry C, 2008, 1129(5): 1479-1492. |
67 | RODNEY L B, AHMET K, KENNETH C N, et al. Recent developments in catalyst-related PEM fuel cell durability[J]. Current Opinion in Electrochemistry, 2020, 21: 192-200. |
68 | 王诚, 王树博, 张剑波. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424- 435. |
WANG Cheng, WANG Shubo, ZHANG Jianbo. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424- 435. | |
69 | 何大平, 木士春. 质子交换膜燃料电池铂电催化剂的稳定策略[J]. 电化学, 2018, 24(6): 655-663. |
HE Daping, MU Shichun. Stabilization strategies of Pt catalysts for proton exchange membrane fuel cells[J]. Journal of Electrochemistry, 2018, 24(6): 655-663. | |
70 | KOU R, SHAO Y Y, MEI D H, et al.Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points[J]. J. Am. Chem. Soc., 2011, 133: 2541-2547. |
71 | WILSON M S, GARZON F H, SICKAFUS K E, et al. Surface area loss of supported platinum in polymer electrolyte fuel cells[J]. J. Electrochem Soc., 1993, 140: 2872-2877. |
72 | FERREIRA P J, LA G J, SHAO-HORN Y, et al. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells[J]. J. Electrochem. Soc., 2005, 152: A2256-A2271. |
73 | BORUP R, MEYERS J, PIVOVAR B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chem. Rev., 2007, 107: 3904-3951. |
74 | TANG L, HAN B, PERSSON K, et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments[J]. J. Am. Chem. Soc., 2010, 132: 596-600. |
75 | TADA T. High dispersion catalysts including novel carbon supports[M]// Handbook of fuel cells-fundamentals, technology and applications. VIELSTICH W, LAMM HGA, Eds. New York: John Wiley & Sons, 2003: 481-488. |
76 | STEVENS D A, HICKS M T, HAUGEN G M, et al. Ex situ and in situ stability studies of PEMFC catalysts[J]. J. Electrochem. Soc., 2005, 152: 2309-2315. |
77 | SHAO Y, YIN G, GAO Y.Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. J. Power Sources, 2007, 171: 558-566. |
78 | JAE H P, SUN-MI H, GU-GON P, et al. Variations in performance-degradation behavior of Pt/CNF and Pt/C MEAs for the same degree of carbon corrosion[J]. Electrochimica Acta, 2018, 260: 674-683. |
79 | PAULUS U A, SCHMIDT T J, GASTEIGER H A, et al. Oxygen reduction on a high-surface area Pt/vulcan carbon catalyst: a thin-film rotating ring-disk electrode study[J]. J. Electroanal. Chem., 2001, 495: 134-145. |
80 | 罗璇, 侯中军, 明平文, 等. 石墨化碳载体对Pt/C质子交换膜燃料电池催化剂稳定性的影响[J]. 催化学报, 2008, 29(4): 330-334. |
LUO Xuan, HOU Zhongjun, MING Pingwen, et al. Effect of graphitic carbon on stability of Pt/C catalysts for proton exchange membrane fuel cells[J]. Chinese Journal of Catalysis, 2008, 29(4): 330-334. | |
81 | STEVENS D A, DAHN J R. Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells [J]. Carbon, 2005, 43: 179-188. |
82 | HE D P, CHENG K, PENG T, et al. Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability [J]. Journal of Materials Chemistry, 2012, 22(39): 21298-21304. |
83 | LV H F, WU P, WAN W, et al. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(9): 7027-7031. |
84 | HE D P, JIANG Y L, PAN M, et al. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability[J]. Applied Catalysis B: Environmental, 2013, 132: 379-388. |
85 | HE D P, RONG Y Y, KOU Z K, et al. Intrinsically microporous polymer slows down fuel cell catalyst corrosion[J]. Electrochemistry Communication, 2015, 59: 72-76. |
86 | HE D P, RONG Y Y, CARTA M, et al. Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM)[J]. RSC Advances, 2016, 6(11): 9315-9319. |
87 | CHEN S G, WEI Z D, QI X Q, et al. Nanostructured poly-aniline-decorated Pt/C@PANI core-shell catalyst with enhanced durability and activity[J]. Journal of the American Chemical Society, 2012, 134(32): 13252-13255. |
88 | YE B, CHENG K, LI W Q, et al. Polyaniline and perfluoro-sulfonic acid co-stabilized metal catalysts for oxygen reduction reaction[J]. Langmuir, 2017, 33(22): 5353-5361. |
89 | TARASEVICH M R, BOGDANOVSKAY V A, LOUBNIN E N, et al. Comparative study of the corrosion behavior of platinum-based nanosized cathodic catalysts for fuel cells [J]. Protection of Metals, 2007, 43(7): 689-693. |
90 | YU P, PEMBERTON M, PLASSE P. PtCo/C cathode catalyst for improved durability in PEMFCs[J]. J. Power Sources, 2005, 144(1): 11-20. |
91 | SEO A, LEE J, HAN K, et al. Performance and stability of Pt-based ternary alloy catalysts for PEMFC [J]. Electrochim Acta, 2006, 52(4): 1603-1611. |
92 | WEI Z D, YIN F, LI L L, et al. study of Pt/C and Pt-fe/C catalysts in the light of quantum chemistry[J]. J. Electroanal. Chem., 2003, 541(1): 185-191. |
93 | YOSHIDA T, KOJIMA K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society[J]. The Electrochemical Society Interface, 2015, 24: 45-49. |
94 | PAULUS U A, WOKAUN A, SCHERER G G, et al. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts[J]. Journal of Physical Chemistry B, 2002, 106(16): 4181-4191. |
95 | GASTEIGER H A, KOCHA S S, SOMPALLI B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B: Environmental, 2005, 56(1/2): 9-35. |
96 | 曹龙生, 蒋尚峰, 秦晓平, 等. 单分散的超小PtCu合金的制备及其氧还原电催化性能[J]. 中国科学: 化学, 2017, 47(5): 683-691. |
CAO Longsheng, JIANG Shangfeng, QIN Xiaoping, et al. Preparation of monodispersed ultra-small PtCu alloy with remarkable electrocatalytic performance[J]. Scientia Sinica Chimica, 2017, 47(5): 683-691. | |
97 | 陈丹, 舒婷, 廖世军. 核壳结构低铂催化剂: 设计, 制备及核的组成及结构的影响[J]. 化工进展, 2013, 32(5): 1053-1059. |
CHEN Dan, SHU Ting, LIAO Shijun. Catalyst with core-shell structure low platium loading: a review on their design, preparation and the effect of core shell structure and composition on catalyst peformance[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1053-1059. | |
98 | KOU Z K, CHENG K, WU H, et al. Observable electrochemical oxidation of carbon promoted by platinum nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 3940-3947. |
99 | CHENG K, KOU Z K, ZHANG J, et al. Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction[J]. Journal of Materials Chemistry A, 2015, 3(26): 14007-14014. |
100 | EASTWOOD B J, CHRISTENSEN P A, ARMSTRONG R D, et al. Electrochemical oxidation of a carbon black loaded polymer electrode in aqueous electrolytes[J]. J. Solid State Electrochem., 1999, 3: 179-186. |
101 | HE C Z, DESAI S, BROWN G, et al. PEM fuel cell catalysts: Cost, performance, and durability [J]. Electrochemical Society Interface, 2005, 14: 41-45. |
102 | LEE K, ZHANG J J, WANG H J, et al. Progress in the synthesis of carbon nanotube and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis [J]. J. Appl. Electrochem., 2006, 36: 507-522. |
103 | SHAO Y Y, YIN G P, ZHANG J, et al. Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution [J]. Electrochim Acta, 2006, 51: 5853-5857. |
104 | LV H F, CHENG N C, MU S C, et al. Heat-treated multiwalled carbon nanotubes as durable supports for PEM fuel cell catalysts[J]. Electrochimica Acta, 2011, 58(5): 736-742. |
105 | 高工产研氢电研究所[EN/OL]. https://mp.weixin.qq.com/s/lW9sJrzVQ86bon5Y1EnqZA, 2020-04-22. |
[EN/OL]. https://mp.weixin.qq.com/s/lW9sJrzVQ86bon5Y1EnqZA, 2020-04-22. | |
106 | 薛虎, 董海刚, 赵家春. 从失效汽车尾气催化剂中回收铂族金属研究进展[J]. 贵金属, 2019, 40(3): 76-83. |
XUE Hu, DONG Haigang, ZHAO Jiachun. Research progress in recovery of platinum group metals from spent automotive exhaust catalystsg[J]. Precious Metals, 2019, 40(3): 76-83. | |
107 | 衣宝廉, 俞红梅. 质子交换膜燃料电池关键材料的现状与展望[J]. 电源技术, 2003, 27(5): 175-179. |
YI Baolian, YU Hongmei. State of art and prospect of key materials for proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources, 2003, 27(5): 175-179. | |
108 | MICHAEL A Y, MATTHEW J L, STEVEN J H. New directions in perfluoroalkyl sulfonic acid based proton exchange membranes[J]. Current Opinion in Electrochemistry, 2019, 18: 90-98. |
109 | SURYA S, MONICA P, MARIO C, et al. Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells[J]. Journal of Power Sources, 2013, 233: 216-230. |
110 | ZHANG L W, CHAE S R, HENDREN Z, et al. Recent advances in proton exchange membranes for fuel cell applications[J]. Chemical Engineering Journal, 2012, 204-206: 87-97. |
111 | GRUBB W T, NIEDRACH L W. Batteries with solid ion exchange membrane electrolytes II.Low-temperature hydroge-oxygen fuel cells[J]. Journal of the Electrochemical Society, 1960, 107(2): 131-135. |
112 | WALTHER G G. CF=CFCFCFSOF and derivatives and polymers thereof: US3718627[P]. 1973. |
113 | CUI Z L, ENRICO D, YOUNG M L. Recent progress in fluoropolymers for membranes[J]. Progress in Polymer Science, 2014, 39(1): 164-198. |
114 | 张永明, 唐军柯, 袁望章. 燃料电池全氟磺酸质子交换膜研究进展[J]. 膜科学与技术, 2011, 31(3): 76-85. |
ZHANG Yongming, TANG Junke, YAUN Wangzhang. Progress of fuel cell perfluorosulfonic acid membrane[J]. Membrane Science and Technology, 2011, 31(3): 76-85. | |
115 | CURTIN D E, LOUSENBERG R D, HENRY T J, et al. Advanced materials for improved PEMFC performance and life[J]. J. Power Sources, 2004, 131: 141-148. |
116 | 高工锂电网[EN/OL]. https://www.gg-lb.com/asdisp-65b095fb-36997.html, 2019-04-15. |
[EN/OL]. https://www.gg-lb.com/asdisp-65b095fb-36997.html, 2019-04-15. | |
117 | 赵经纬, 蔡园满, 易秘, 等. 燃料电池用质子交换膜产业分析[J]. 江西化工, 2019(6): 322-326. |
ZHAO Jingwei, CAI Yuanman, YI Mi, et al. Industry analysis of proton exchange membrane for fuel cell[J]. Jiangxi Chemical Industry, 2019(6): 322-326. | |
118 | RYSZARD W, PETER N P, JUN W P. New developments in proton conducting membranes for fuel cells[J]. Current Opinion in Chemical Engineering, 2014, 4: 71-78. |
119 | BAHAR B, HOBSON A R, KOLDE J A, et al. Ultra-thin integral composite membrane: US 5547551[P]. 1996-08-20. |
120 | 高工锂电网[EN/OL]. https://www.gg-lb.com/asdisp2--36368-.html, 2019-02-26. |
[EN/OL]. https://www.gg-lb.com/asdisp2--36368-. html, 2019-02-26. | |
121 | 李丹, 宋天丹, 康敬欣. 燃料电池用质子交换膜的研究进展[J]. 电源技术, 2016, 40(10): 2084-2087. |
LI Dan, SONG Tiandan, KANG Jingxin. Development of proton exchange membrane for fuel cell[J]. Chinese Journal of Power Sources, 2016, 40(10): 2084-2087. | |
122 | CINDRELLA L, KANNAN A M, LIN J F, et al. Gas diffusion layer for proton exchange membrane fuel cells—A review[J]. Journal of Power Sources, 2009, 194(1): 146-160. |
123 | ARVAY A, YLI-RANTALA E, LIU C H, et al. Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells—A review[J]. Journal of Power Sources, 2012, 213: 317-337. |
124 | TANUMA T. Innovative hydrophilic microporous layers for cathode gas diffusion media[J]. Journal of The Electrochemical Society, 2010, 157(12): B1809-B1813. |
125 | CHUN J H, JO D H, KIM S G, et al. Development of a porosity-graded micro porous layer using thermal expandable graphite for proton exchange membrane fuel cells[J]. Renewable Energy, 2013, 58: 28-33. |
126 | REZA O, BAHMAN S. Gas diffusion layer modifications and treatments for improving the performance of proton exchange membrane fuel cells and electrolysers: a review[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28515-28536. |
127 | PARK H.Effect of the hydrophilic and hydrophobic characteristics of the gas diffusion medium on polymer electrolyte fuel cell performance under non-humidification condition[J]. Energy Conversion and Management, 2014, 81: 220-230. |
128 | SEHKYU P, JONG-WON L, BRANKO N P. A review of gas diffusion layer in PEM fuel cells: materials and designs[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5850-5865. |
129 | ADNAN O, SAMANEH S, LI X G, et al. A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs[J]. Progress in Energy and Combustion Science, 2019, 74: 50-102. |
130 | BENZIGER J, NEHLSEN J, BLACKWELL D, et al. Water flow in the gas diffusion layer of PEM fuel cells[J]. Journal of Membrane Science, 2005, 261(1/2): 98-106. |
131 | NADA Z, LI X G. Effective transport properties for polymer electrolyte membrane fuel cells with a focus on the gas diffusion layer[J]. Progress in Energy and Combustion Science, 2013, 39(1): 111-146. |
132 | 魏明瑞. 碳纤维在质子交换膜燃料电池膜电极中的应用[J]. 纺织科学研究, 2012(2): 38-43. |
WEI Mingrui. Application of carbon fiber in membrane electrode of proton exchange membrane fuel cell[J]. Textile Science Research, 2012(2): 38-43. | |
133 | 王晓丽, 张华民, 张建鲁, 等. 质子交换膜燃料电池气体扩散层的研究进展[J]. 化学进展, 2006, 18(4): 507-512. |
WANG Xiaoli, ZHANG Huamin, ZHANG Jianlu, et al. Progress of gas diffusion layer for proton exchage membrane fuel cells[J]. Progress in Chemistry, 2006, 18(4): 507-512. | |
134 | GERTEISEN D, HEILMANN T, ZIEGLER C. Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell[J]. Journal of Power Sources, 2008, 177(2): 348-354. |
135 | HAYASHI M, SUGITANI T, ASANO Y. Diffusion film, electrode having the diffusion film, and process for producing diffusion film: US20050173244A1[P]. 2005. |
136 | CHEN-YANG Y W, HUNG T F, HUANG J, et al. Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell[J]. J. Power Sources, 2007, 173: 183-188. |
137 | MAKOTO N, YOSHIHIKO H, HIDEHIKO O, et al. Carbon fiber paper and porous carbon electrode base material for fuel cells: EP11958281 [P]. 2002-04-10. |
138 | MAKOTO N, YOSHIHIKO H, HIDEHIKO O, et al. Porous carbon electrode material, method for manufacturing the same and carbon fiber paper: US20021750731[P]. 2002-11-28. |
139 | NAKAMURA M, HOSAKO Y, OHASHI H, et al. Porous carbon electrode substrate and its production method and carbon fiber paper: US20051004981[P]. 2005-05-12. |
140 | 彭公秋, 李国丽, 曹正华, 等. 高性能聚丙烯腈基碳纤维发展现状与分析[J]. 材料导报, 2017, 31(S2): 398-402. |
PENG Gongqiu, LI Guoli, CAO Zhenghua, et al. Development situation and analysis of advanced PAN-based carbon fiber[J]. Sciences & Technology Review, 2017, 31(S2): 398-402. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[3] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[4] | 王亚楠, 孟秀霞, 张维民, 杨乃涛. 表/界面调控策略在氢/氧反应电极中的研究进展[J]. 化工进展, 2022, 41(5): 2416-2428. |
[5] | 万年坊. 质子交换膜水电解制氢膜电极研究进展[J]. 化工进展, 2022, 41(12): 6385-6394. |
[6] | 李政翰, 涂正凯. 质子交换膜燃料电池仿真模型研究进展[J]. 化工进展, 2022, 41(10): 5272-5296. |
[7] | 姬峰, 郑博文, 罗若尹, 杜玮, 邓呈维, 杨声, 刘志强. 高温质子交换膜燃料电池电堆稳定性分析与优化[J]. 化工进展, 2022, 41(10): 5325-5331. |
[8] | 李云飞, 王致鹏, 段磊, 陈良, 徐守冬, 张鼎, 段东红, 刘世斌. 质子交换膜燃料电池有序化膜电极研究进展[J]. 化工进展, 2021, 40(S1): 101-110. |
[9] | 王敏键, 陈四国, 邵敏华, 魏子栋. 氢燃料电池电催化剂研究进展[J]. 化工进展, 2021, 40(9): 4948-4961. |
[10] | 李金晟, 葛君杰, 刘长鹏, 邢巍. 燃料电池高温质子交换膜研究进展[J]. 化工进展, 2021, 40(9): 4894-4903. |
[11] | 何广利, 窦美玲. 氢气中杂质对车用燃料电池性能影响的研究进展[J]. 化工进展, 2021, 40(9): 4815-4822. |
[12] | 廖珮懿, 杨代军, 明平文, 薛明喆, 李冰, 张存满. 微流道气-液两相流研究及其在PEMFC中的应用进展[J]. 化工进展, 2021, 40(9): 4734-4748. |
[13] | 何泽兴, 史成香, 陈志超, 潘伦, 黄振峰, 张香文, 邹吉军. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773. |
[14] | 罗惠玲, 邵诸锋, 王树博, 徐先林. 多孔有机笼在聚丙烯腈纳米纤维表面固载及其复合质子交换膜[J]. 化工进展, 2021, 40(7): 3854-3861. |
[15] | 和晶, 王晓江, 张硕猛, 和庆钢. 原子力显微镜在质子交换膜燃料电池表/界面现象中的应用[J]. 化工进展, 2021, 40(6): 2993-3004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |