化工进展 ›› 2021, Vol. 40 ›› Issue (2): 642-651.DOI: 10.16085/j.issn.1000-6613.2020-0626
付博(), 田建昌, 刘菊, 张润叶, 陈慕华, 朱新宝()
收稿日期:
2020-04-20
修回日期:
2020-06-07
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
朱新宝
作者简介:
付博(1984—),男,博士,副教授,研究方向为传质与分离工程、环境工程。E-mail:基金资助:
Bo FU(), Jianchang TIAN, Ju LIU, Runye ZHANG, Muhua CHEN, Xinbao ZHU()
Received:
2020-04-20
Revised:
2020-06-07
Online:
2021-02-05
Published:
2021-02-09
Contact:
Xinbao ZHU
摘要:
由溶解的CO2引发的Rayleigh对流,对咸水层中CO2的捕获与封存至关重要。为了更加直观地了解该过程的混合规律和盐浓度变化带来的影响,本文采用格子Boltzmann方法(LBM)对该过程进行了模拟。通过建立包含密度和浓度分布函数的双分布模型,同时引入静电力和体积力等外力项,对293.15K、101kPa下有多个离散的CO2扩散源时的浓度分布进行了模拟。结果表明,模拟得到的Rayleigh对流结构、对流发生时间、流场速度和瞬时传质通量的数量级与前人研究结果一致;在咸水吸收CO2过程中,Rayleigh对流结构可有效强化传质;瞬时传质通量随着时间增长先减小后增大再减小,对应了Rayleigh对流结构产生、发展、稳定的变化过程。同时模拟CO2在纯水和不同盐浓度咸水中的溶解过程结果表明,盐浓度的增加会延迟Rayleigh对流的开始时间、降低传质效率,这与前人的实验结果一致,模拟结果可为不同盐浓度咸水层中CO2的封存提供指导。
中图分类号:
付博, 田建昌, 刘菊, 张润叶, 陈慕华, 朱新宝. 格子Boltzmann方法模拟咸水吸收CO2的Rayleigh对流过程[J]. 化工进展, 2021, 40(2): 642-651.
Bo FU, Jianchang TIAN, Ju LIU, Runye ZHANG, Muhua CHEN, Xinbao ZHU. Rayleigh convection of carbon dioxide absorption in saline water by lattice Boltzmann simulation[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 642-651.
盐浓度 /mol·L-1 | 溶液密度 /kg·m-3 | 密度差 /kg·m-3 | 溶解度 /kg·m-3 | 扩散系数 /×10-9m2·s-1 | 动力黏度 /mPa·s |
---|---|---|---|---|---|
0.0 | 998.50 | 0.32 | 1.72 | 1.75 | 1.10 |
0.5 | 1018.2 | 0.29 | 1.58 | 1.56 | 1.11 |
1.0 | 1038.1 | 0.27 | 1.41 | 1.39 | 1.21 |
1.5 | 1058.1 | 0.25 | 1.29 | 1.24 | 1.27 |
2.0 | 1077.5 | 0.24 | 1.19 | 1.11 | 1.32 |
2.5 | 1096.1 | 0.22 | 1.10 | 0.99 | 1.40 |
3.0 | 1114.2 | 0.21 | 1.01 | 0.88 | 1.50 |
表1 不同NaCl浓度咸水饱和二氧化碳溶液物性[34-37]
盐浓度 /mol·L-1 | 溶液密度 /kg·m-3 | 密度差 /kg·m-3 | 溶解度 /kg·m-3 | 扩散系数 /×10-9m2·s-1 | 动力黏度 /mPa·s |
---|---|---|---|---|---|
0.0 | 998.50 | 0.32 | 1.72 | 1.75 | 1.10 |
0.5 | 1018.2 | 0.29 | 1.58 | 1.56 | 1.11 |
1.0 | 1038.1 | 0.27 | 1.41 | 1.39 | 1.21 |
1.5 | 1058.1 | 0.25 | 1.29 | 1.24 | 1.27 |
2.0 | 1077.5 | 0.24 | 1.19 | 1.11 | 1.32 |
2.5 | 1096.1 | 0.22 | 1.10 | 0.99 | 1.40 |
3.0 | 1114.2 | 0.21 | 1.01 | 0.88 | 1.50 |
25 | DUAN Lianyun, ZHOU Gongdu. Intermolecular force, an important factor determining the properties of matter[J]. University Chemistry, 1989, 4(2): 1-7. |
26 | 彭勇, 张富民, 许春慧, 等. CO2和N2O在Kureha活性炭上吸附行为的对比研究[C]//第五届全国化工年会论文集. 西安, 2008. |
PENG Yong, ZHANG Fumin, XU Chunhui, et al. Comparison of adsorption behaviors of CO2and N2O on Kureha activated carbon[C]// Paper collection of the 5th National Chemical Industry Annual Meeting. Xi’an, 2008. | |
27 | ALLEN M P, TILDESLAY D J. Computer simulation of liquids[M]. Oxford: Clarendon Press, 1987. |
28 | 付博, 袁希钢, 陈淑勇, 等. Rayleigh对流及其对界面传质影响模拟的格子Boltzmann方法[J]. 化工学报, 2011, 62(11): 2995-3000. |
FU Bo, YUAN Xigang, CHEN Shuyong, et al. Rayleigh convection and its effect on interfacial mass transfer by lattice Boltzmann simulation[J]. CIESC Journal, 2011, 62(11): 2995-3000. | |
29 | SHAN Xiaowen. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[J]. Physical Review E, 1997, 55(3): 2780-2788. |
30 | SHAN Xiaowen, DOOLEN G. Multicomponent lattice Boltzmann model with interparticle interaction[J]. Journal of Statistical Physics, 1995, 81(1/2): 379-393. |
31 | INANURO T, YOSHINO M, OGINO F. A non-slip boundary condition for lattice Boltzmann simulations[J]. Physics of Fluids, 1996, 8(4): 2928-2930. |
32 | SHI Yong, ZHAO Tianshou, GUO Zhixiong. Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus[J]. Computers & Fluids, 2006, 35(1): 1-15. |
33 | SUKOP M C, THORNE D T. Lattice Boltzmann modeling: an introduction for geoscientists and engineers[M]. Berlin, Heidelberg, New York: Springer, 2006. |
34 | 刘光启, 马连湘, 刘杰, 等. 化学化工物性数据手册·无机卷[M]. 北京: 化学工业出版社, 2002. |
1 | 康丽娜, 尚会建, 郑学明. CO2的捕集封存技术进展及在我国的应用前景[J]. 化工进展, 2010, 29(S1): 24-27. |
KANG Lina, SHANG Huijian, ZHENG Xueming, et al. Development of carbon dioxide capture and storage technology and its application prospect in China[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 24-27. | |
2 | SMYTH R C, MECKEL T A. Best management practices for subseabed geologic sequestration of carbon dioxide[M]. USA: IEEE, 2012. |
3 | LEUNG D Y C, CARAMANNA G, MAROTO-VALER M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Review, 2014, 39: 426-443. |
4 | LINDERBERG E, WESSELBERG D. Vertical convection in an aquifer column under a gas cap of CO2[J]. Energy Conversion and Management, 1997, 38(96): s229-s234. |
5 | WEIR G J, WHITE S P, KISSLING W M, et al. Reservoir storage and containment of greenhouse gases[J]. Energy Conversion and Management, 1995, 36(6): 531-534. |
6 | 傅强, 张会书, 胡楠, 等. 水溶解CO2过程界面对流现象的PIV/LIF测量及传质系数预测[J]. 化工学报, 2018, 69(2): 586-594. |
FU Qiang, ZHANG Huishu, HU Nan, et al. Simultaneous PIV/LIF measurements of interfacial convection during CO2 dissolution in water and prediction of mass transfer coefficient[J]. CIESC Journal, 2018, 69(2): 586-594. | |
7 | ENNIS-KING J, PRESTON I, PATERSON L. Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions[J]. Physics of Fluids, 2005, 17(8): 84-107. |
8 | KHOSROKHAVAR R, ELSINGA G, FARAJZADEH R, et al. Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems[J]. Journal of Petroleum Science & Engineering, 2014, 122(21): 230-239. |
9 | KNEAFSEY T J, PRUESS K. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection[J]. Transport in Porous Media, 2010, 82(1): 123-139. |
10 | SOROUSH M, WESSEL-BERG D, OLE T, et al. Affecting parameters in density driven convection mixing in CO2 storage in brine[C]// SPE Europec/Eage Conference. Copenhagen Denmark: Society of Petroleum Engineers, 2012. |
11 | ABAD M S N, ROSTAMI B, PAZHOOHAN J. Experimental study of the impact of salinity and temperature on convection mechanism during CO2 storage in saline aquifers[C]// Proceedings of the 78th EAGE Conference and Exhibition, Vienna, Austria: European Association of Geoscientists & Engineers, 2016. |
12 | KHOSROKHAVAR R, EFTEKHARI A, FARAJZDADEH R, et al. Effect of salinity and pressure on the rate of mass transfer in aquifer storage of CO2[C]// IOR 2015-18th European Symposium on Improved Oil Recovery, Dresden, Germany: Springer International Publishing, 2016. |
13 | MACMINN C W, SZULCZEWSKI M L, JUANES R. CO2 migration in saline aquifers: regimes in migration with dissolution[J]. Energy Procedia, 2011, 4: 3904-3910. |
14 | XU Xiaofeng, CHEN Shiyi, ZHANG Dongxiao. Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers[J]. Advances in Water Resources, 2006, 29(3): 397-407. |
15 | PRUESS K, ZHANG Keni. Numerical modeling studies of the dissolution-diffusion-convection process during CO2 storage in saline aquifers[C]//Technical Report LBNL1243E, Lawrence Berkeley National Laboratory, California, 2008. |
16 | 张潇丹, 雍玉梅, 李文军, 等. REV尺度多孔介质格子Boltzmann方法的数学模型及应用的研究进展[J]. 化工进展, 2016, 35(6): 1698-1712. |
ZHANG Xiaodan, YONG Yumei, LI Wenjun, et al. Models and application of lattice Boltzmann method at REV-scale in porous media[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1698-1712. | |
17 | INAMURO T, YOSHINO M, INOUE H, et al. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem[J]. Journal of Computational Physics, 2002, 179(1): 201-215. |
18 | QIAN Y H, D’HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484. |
19 | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009: 156-157. |
GUO Zhaoli, ZHENG Chuguang. The principle and application of lattice Boltzmann method[M]. Beijing: Science Press, 2009: 156-157. | |
20 | GUO Zhaoli, SHI Baochang, WANG Nengchao. Fully Lagrangian and lattice Boltzmann methods for the advection-diffusion equation[J]. Journal of Scientific Computing, 1999, 14(3): 291-300. |
21 | BUICK J M, GREATED C A. Gravity in a lattice Boltzmann model[J]. Physical Review E: Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2000, 61(5A): 5307-5320. |
22 | CHALBAUD C, ROBIN M, LOMBARD J M, et al. Interfacial tension measurements and wettability evaluation for geological CO2 storage[J]. Advances in Water Resources, 2009, 32(1): 98-109. |
23 | AGGELOPOULOS C A, ROBIN M, PERFETTI E, et al. CO2/CaCl2 solution interfacial tensions under CO2 geological storage conditions: influence of cation valence on interfacial tension[J]. Advances in Water Resources, 2010, 33(6): 691-697. |
24 | AGGELOPOULOS C A, ROBIN M, VIZIKA O. Interfacial tension between CO2 and brine (NaCl+CaCl2) at elevated pressures and temperatures: the additive effect of different salts[J]. Advances in Water Resources, 2011, 34(4): 505-511. |
25 | 段连运, 周公度. 决定物质性质的一种重要因素-分子间作用力[J]. 大学化学, 1989, 4(2): 1-7. |
34 | LIU Guangqi, MA Lianxiang, LIU Jie, et al. Physical property data manual of chemical industry—Inorganic volume[M]. Beijing: Chemical Industry Press, 2002. |
35 | NIELSEN L C, BOURG I C, SPOSITO G. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage[J]. Geochimica et Cosmochimica Acta, 2012, 81: 1-38. |
36 | PARKINSON W J, DENEVERS N J. Partial molar volume of carbon dioxide in water solutions[J]. Industrial & Engineering Chemistry Research Fundamentals, 1969, 8(4): 709-713. |
37 | SHARYGIN A V, WOOD R H. Volumes and heat capacities of aqueous solutions of ammonium chloride from the temperatures 298.15K to 623K and pressures to 28MPa[J]. Journal of Chemical Thermodynamics, 1996, 28(8): 851-872. |
38 | FU Bo, LIU Botan, YUAN Xigang, et al. Modeling of Rayleigh convection in gas-liquid interfacial mass transfer using lattice Boltzmann method[J]. Chemical Engineering Research and Design, 2013, 91(3): 437-447. |
39 | THOMAS C, DEHAECK A, DEWIT A, et al. Convective dissolution of CO2 in water and salt solutions[J]. International Journal of Greenhouse Gas Control, 2018, 72: 105-116. |
40 | 沙勇, 李樟云, 林芬芬, 等. 气液传质界面湍动现象投影观察[J]. 化工学报, 2010, 61(4): 844-847. |
SHA Yong, LI Zhangyun, LIN Fenfen, et al. Shadowgraph observation on interfacial turbulence phenomena in gas-liquid mass transfer[J]. CIESC Journal, 2010, 61(4): 844-847. | |
41 | GRAHN A. Two-dimensional numerical simulations of Marangoni-Bénard instabilities during liquid-liquid mass transfer in a vertical gap[J]. Chemical Engineering Science, 2006, 61(11): 3586-3592. |
42 | 杨盼瑞, 郭会荣, 周倩, 等. 广泛温度和盐度条件下二氧化碳在盐水中的扩散系数[J]. 地质科技情报, 2018, 37(6): 258-263. |
YANG Panrui, GUO Huirong, ZHOU Qian, et al. Diffusion coefficient of carbon dioxide in brine in wide temperature and salinity ranges: measurement and model calculation[J]. Geological Science and Technology Information, 2018, 37(6): 258-263. | |
43 | LOODTS V, RONGY L, DEWIT A, et al. Impact of pressure, salt concentration, and temperature on the convective dissolution of carbon dioxide in aqueous solutions[J]. Chaos: An Interdisciplinary Journal of Nonlinea, 2014, 24(4): 1-12. |
44 | GEROGE S H P, BELL J B, PRUESS K, et al. High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers[J]. Advances in Water Resources, 2010, 33(4): 443-455. |
[1] | 李季桐, 王刚, 熊亚选, 徐钱. 不同工质单效吸收式制冷系统的能量和㶲分析[J]. 化工进展, 2023, 42(S1): 104-112. |
[2] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[3] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[4] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[5] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[6] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[7] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[8] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[9] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[10] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[11] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[12] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[13] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[14] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[15] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |