25 |
DUAN Lianyun, ZHOU Gongdu. Intermolecular force, an important factor determining the properties of matter[J]. University Chemistry, 1989, 4(2): 1-7.
|
26 |
彭勇, 张富民, 许春慧, 等. CO2和N2O在Kureha活性炭上吸附行为的对比研究[C]//第五届全国化工年会论文集. 西安, 2008.
|
|
PENG Yong, ZHANG Fumin, XU Chunhui, et al. Comparison of adsorption behaviors of CO2and N2O on Kureha activated carbon[C]// Paper collection of the 5th National Chemical Industry Annual Meeting. Xi’an, 2008.
|
27 |
ALLEN M P, TILDESLAY D J. Computer simulation of liquids[M]. Oxford: Clarendon Press, 1987.
|
28 |
付博, 袁希钢, 陈淑勇, 等. Rayleigh对流及其对界面传质影响模拟的格子Boltzmann方法[J]. 化工学报, 2011, 62(11): 2995-3000.
|
|
FU Bo, YUAN Xigang, CHEN Shuyong, et al. Rayleigh convection and its effect on interfacial mass transfer by lattice Boltzmann simulation[J]. CIESC Journal, 2011, 62(11): 2995-3000.
|
29 |
SHAN Xiaowen. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[J]. Physical Review E, 1997, 55(3): 2780-2788.
|
30 |
SHAN Xiaowen, DOOLEN G. Multicomponent lattice Boltzmann model with interparticle interaction[J]. Journal of Statistical Physics, 1995, 81(1/2): 379-393.
|
31 |
INANURO T, YOSHINO M, OGINO F. A non-slip boundary condition for lattice Boltzmann simulations[J]. Physics of Fluids, 1996, 8(4): 2928-2930.
|
32 |
SHI Yong, ZHAO Tianshou, GUO Zhixiong. Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus[J]. Computers & Fluids, 2006, 35(1): 1-15.
|
33 |
SUKOP M C, THORNE D T. Lattice Boltzmann modeling: an introduction for geoscientists and engineers[M]. Berlin, Heidelberg, New York: Springer, 2006.
|
34 |
刘光启, 马连湘, 刘杰, 等. 化学化工物性数据手册·无机卷[M]. 北京: 化学工业出版社, 2002.
|
1 |
康丽娜, 尚会建, 郑学明. CO2的捕集封存技术进展及在我国的应用前景[J]. 化工进展, 2010, 29(S1): 24-27.
|
|
KANG Lina, SHANG Huijian, ZHENG Xueming, et al. Development of carbon dioxide capture and storage technology and its application prospect in China[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 24-27.
|
2 |
SMYTH R C, MECKEL T A. Best management practices for subseabed geologic sequestration of carbon dioxide[M]. USA: IEEE, 2012.
|
3 |
LEUNG D Y C, CARAMANNA G, MAROTO-VALER M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Review, 2014, 39: 426-443.
|
4 |
LINDERBERG E, WESSELBERG D. Vertical convection in an aquifer column under a gas cap of CO2[J]. Energy Conversion and Management, 1997, 38(96): s229-s234.
|
5 |
WEIR G J, WHITE S P, KISSLING W M, et al. Reservoir storage and containment of greenhouse gases[J]. Energy Conversion and Management, 1995, 36(6): 531-534.
|
6 |
傅强, 张会书, 胡楠, 等. 水溶解CO2过程界面对流现象的PIV/LIF测量及传质系数预测[J]. 化工学报, 2018, 69(2): 586-594.
|
|
FU Qiang, ZHANG Huishu, HU Nan, et al. Simultaneous PIV/LIF measurements of interfacial convection during CO2 dissolution in water and prediction of mass transfer coefficient[J]. CIESC Journal, 2018, 69(2): 586-594.
|
7 |
ENNIS-KING J, PRESTON I, PATERSON L. Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions[J]. Physics of Fluids, 2005, 17(8): 84-107.
|
8 |
KHOSROKHAVAR R, ELSINGA G, FARAJZADEH R, et al. Visualization and investigation of natural convection flow of CO2 in aqueous and oleic systems[J]. Journal of Petroleum Science & Engineering, 2014, 122(21): 230-239.
|
9 |
KNEAFSEY T J, PRUESS K. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection[J]. Transport in Porous Media, 2010, 82(1): 123-139.
|
10 |
SOROUSH M, WESSEL-BERG D, OLE T, et al. Affecting parameters in density driven convection mixing in CO2 storage in brine[C]// SPE Europec/Eage Conference. Copenhagen Denmark: Society of Petroleum Engineers, 2012.
|
11 |
ABAD M S N, ROSTAMI B, PAZHOOHAN J. Experimental study of the impact of salinity and temperature on convection mechanism during CO2 storage in saline aquifers[C]// Proceedings of the 78th EAGE Conference and Exhibition, Vienna, Austria: European Association of Geoscientists & Engineers, 2016.
|
12 |
KHOSROKHAVAR R, EFTEKHARI A, FARAJZDADEH R, et al. Effect of salinity and pressure on the rate of mass transfer in aquifer storage of CO2[C]// IOR 2015-18th European Symposium on Improved Oil Recovery, Dresden, Germany: Springer International Publishing, 2016.
|
13 |
MACMINN C W, SZULCZEWSKI M L, JUANES R. CO2 migration in saline aquifers: regimes in migration with dissolution[J]. Energy Procedia, 2011, 4: 3904-3910.
|
14 |
XU Xiaofeng, CHEN Shiyi, ZHANG Dongxiao. Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers[J]. Advances in Water Resources, 2006, 29(3): 397-407.
|
15 |
PRUESS K, ZHANG Keni. Numerical modeling studies of the dissolution-diffusion-convection process during CO2 storage in saline aquifers[C]//Technical Report LBNL1243E, Lawrence Berkeley National Laboratory, California, 2008.
|
16 |
张潇丹, 雍玉梅, 李文军, 等. REV尺度多孔介质格子Boltzmann方法的数学模型及应用的研究进展[J]. 化工进展, 2016, 35(6): 1698-1712.
|
|
ZHANG Xiaodan, YONG Yumei, LI Wenjun, et al. Models and application of lattice Boltzmann method at REV-scale in porous media[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1698-1712.
|
17 |
INAMURO T, YOSHINO M, INOUE H, et al. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem[J]. Journal of Computational Physics, 2002, 179(1): 201-215.
|
18 |
QIAN Y H, D’HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484.
|
19 |
郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009: 156-157.
|
|
GUO Zhaoli, ZHENG Chuguang. The principle and application of lattice Boltzmann method[M]. Beijing: Science Press, 2009: 156-157.
|
20 |
GUO Zhaoli, SHI Baochang, WANG Nengchao. Fully Lagrangian and lattice Boltzmann methods for the advection-diffusion equation[J]. Journal of Scientific Computing, 1999, 14(3): 291-300.
|
21 |
BUICK J M, GREATED C A. Gravity in a lattice Boltzmann model[J]. Physical Review E: Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2000, 61(5A): 5307-5320.
|
22 |
CHALBAUD C, ROBIN M, LOMBARD J M, et al. Interfacial tension measurements and wettability evaluation for geological CO2 storage[J]. Advances in Water Resources, 2009, 32(1): 98-109.
|
23 |
AGGELOPOULOS C A, ROBIN M, PERFETTI E, et al. CO2/CaCl2 solution interfacial tensions under CO2 geological storage conditions: influence of cation valence on interfacial tension[J]. Advances in Water Resources, 2010, 33(6): 691-697.
|
24 |
AGGELOPOULOS C A, ROBIN M, VIZIKA O. Interfacial tension between CO2 and brine (NaCl+CaCl2) at elevated pressures and temperatures: the additive effect of different salts[J]. Advances in Water Resources, 2011, 34(4): 505-511.
|
25 |
段连运, 周公度. 决定物质性质的一种重要因素-分子间作用力[J]. 大学化学, 1989, 4(2): 1-7.
|
34 |
LIU Guangqi, MA Lianxiang, LIU Jie, et al. Physical property data manual of chemical industry—Inorganic volume[M]. Beijing: Chemical Industry Press, 2002.
|
35 |
NIELSEN L C, BOURG I C, SPOSITO G. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage[J]. Geochimica et Cosmochimica Acta, 2012, 81: 1-38.
|
36 |
PARKINSON W J, DENEVERS N J. Partial molar volume of carbon dioxide in water solutions[J]. Industrial & Engineering Chemistry Research Fundamentals, 1969, 8(4): 709-713.
|
37 |
SHARYGIN A V, WOOD R H. Volumes and heat capacities of aqueous solutions of ammonium chloride from the temperatures 298.15K to 623K and pressures to 28MPa[J]. Journal of Chemical Thermodynamics, 1996, 28(8): 851-872.
|
38 |
FU Bo, LIU Botan, YUAN Xigang, et al. Modeling of Rayleigh convection in gas-liquid interfacial mass transfer using lattice Boltzmann method[J]. Chemical Engineering Research and Design, 2013, 91(3): 437-447.
|
39 |
THOMAS C, DEHAECK A, DEWIT A, et al. Convective dissolution of CO2 in water and salt solutions[J]. International Journal of Greenhouse Gas Control, 2018, 72: 105-116.
|
40 |
沙勇, 李樟云, 林芬芬, 等. 气液传质界面湍动现象投影观察[J]. 化工学报, 2010, 61(4): 844-847.
|
|
SHA Yong, LI Zhangyun, LIN Fenfen, et al. Shadowgraph observation on interfacial turbulence phenomena in gas-liquid mass transfer[J]. CIESC Journal, 2010, 61(4): 844-847.
|
41 |
GRAHN A. Two-dimensional numerical simulations of Marangoni-Bénard instabilities during liquid-liquid mass transfer in a vertical gap[J]. Chemical Engineering Science, 2006, 61(11): 3586-3592.
|
42 |
杨盼瑞, 郭会荣, 周倩, 等. 广泛温度和盐度条件下二氧化碳在盐水中的扩散系数[J]. 地质科技情报, 2018, 37(6): 258-263.
|
|
YANG Panrui, GUO Huirong, ZHOU Qian, et al. Diffusion coefficient of carbon dioxide in brine in wide temperature and salinity ranges: measurement and model calculation[J]. Geological Science and Technology Information, 2018, 37(6): 258-263.
|
43 |
LOODTS V, RONGY L, DEWIT A, et al. Impact of pressure, salt concentration, and temperature on the convective dissolution of carbon dioxide in aqueous solutions[J]. Chaos: An Interdisciplinary Journal of Nonlinea, 2014, 24(4): 1-12.
|
44 |
GEROGE S H P, BELL J B, PRUESS K, et al. High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers[J]. Advances in Water Resources, 2010, 33(4): 443-455.
|