1 |
王伟建, 潘智勇, 李文林, 等. 蒽醌法流化床与固定床的发展趋势[J]. 化工进展, 2016, 35(6): 1766-1773.
|
|
WANG W J, PAN Z Y, LI W L, et al. Recent advances in development of the fluidized bed and fixed bed in the anthraquinoneroute[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1766-1773.
|
2 |
GUO Y Y, DAI C N, LEI Z G, et al. Synthesis of hydrogen peroxide over Pd/SiO2/COR monolith catalysts by anthraquinone method[J]. Catalysis Today, 2016, 276: 36-45.
|
3 |
GUO Y Y, DAI C N, LEI Z G, et al. Hydrogenation of 2-ethylanthraquinone on Pd-La/SiO2/cordierite and Pd-Zn/SiO2/cordierite bimetallic monolithic catalysts[J]. Chemical Engineering and Processing Process Intensification, 2019, 136: 211-225.
|
4 |
SANTACESARIA E, FERRO R, RICCI S, et al. Kinetic aspects in the oxidation of hydrogenate 2-ethyltetrahydroanthraquinone[J]. Industrial & Engineering Chemistry Research, 1987, 26: 155-159.
|
5 |
SHEIKH J, KERSHENBAUM J, ALPAY E. Analytical basis for separation enhanced reaction in continuous flow processes[J]. Chemical Engineering Science, 1988, 53: 2933-2939.
|
6 |
严润华, 蔡卫权, 卓俊琳, 等. 一锅溶剂蒸发诱导自组装法制备助剂体相分布的Pd-Ba-Zn/γ-Al2O3催化剂及其蒽醌加氢性能[J]. 化工进展, 2018, 37(3): 1014-1020.
|
|
YAN R H, CAI W Q, ZHUO J L, et al. One-pot solvent evaporation induced self-assembly synthesis of Pd-Ba-Zn/γ-Al2O3 catalyst with homogeneous distribution of the promoters and its hydrogenation performance of anthraquinone [J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1014-1020.
|
7 |
FENG J T, WANG H Y, XUE D, et al. Catalytic hydrogenation of ethylanthraquinone over highly dispersed eggshell Pd/SiO2-Al2O3 spherical catalysts[J]. Applied Catalysis A: General, 2010, 382: 240-245.
|
8 |
ZHANG D, LUO J J, XIAO X, et al. Ru/FeOx catalyst performance design: highly dispersed Ru species for selective carbon dioxide hydrogenation[J]. Chinese Journal of Catalysis, 2018, 39: 157-166.
|
9 |
GUO X, WANG X C, XIAN M, et al. Selective hydrogenation of D-glucose to D-sorbitol over Ru/ZSM-5 catalysts[J]. Chinese Journal of Catalysis, 2014, 35: 733-740.
|
10 |
MICHELLE F, ANTONIO J. Influence of the support nature and morphology on the performance of ruthenium catalysts for partial hydrogenation of benzene in liquid phase[J]. Catalysis Today, 2010, 149: 321-325.
|
11 |
HUANG B, KIOBAYASHI H, YAMAMOTO T, et al. Solid-solution alloying immiscible Ru and Cu with enhanced CO oxidation activity[J]. Journal of the American Chemical society, 2017, 139: 4643-4646.
|
12 |
KATARZYNA B, JANINA O, WLODZIMIERZ T. Microwave-assisted polyol synthesis of bimetallic RuRe nanoparticles stabilized by PVP or oxide supports (alumina and silica) [J]. Applied Catalysis A: General, 2015, 511: 117-130.
|
13 |
ALAYOGLU S, ZAVAIJ P, ERICHHOM B, et al. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles[J]. ACS Nano, 2009, 3: 3127-3137.
|
14 |
FILIP M, CHRISTOPHER M, KAREL H. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions[J]. Chemical Society Reviews, 2006, 108: 845-904.
|
15 |
ALAYOGLU S, ERICHHOMM B, NILEKAR A, et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Nature Materials, 2008, 7: 333-338.
|
16 |
AKANE M, IOAN B, YOSHIO N, et al. Preparation of Ru nanoparticles supported on γ-Al2O3 and its novel catalytic activity for ammonia synthesis[J]. Journal of Catalysis, 2001, 204: 364-371.
|
17 |
陈纪兴. 蒽醌法双氧水生产中加氢反应原理及其控制[J]. 无机盐工业, 2000, 32(2):36-40.
|
|
CHEN J X. The principle and control of hydrogenation in the production process of hydrogen peroxide with 2-EAQ as working medium[J]. Inorganic Chemicals Industry, 2000, 32(2): 36-40.
|
18 |
ZHANG J L, GAO K G, WANG S L, et al. Performance of bimetallic PdRu catalysts supported on gamma alumina for 2-ethylanthraquinone hydrogenation[J]. RSC Advances, 2017, 7: 6447-6456.
|
19 |
YU J F, GE J, FANG W, et al. Influences of calcination temperature on the efficiency of CaO promotion over CaO modified Pt/γ-Al2O3 catalyst[J]. Applied Catalysis A: General, 2011, 395: 114-119.
|
20 |
SHI Y, LI X R, RONG X, et al. Influence of support on the catalytic properties of Pt-Sn-K/θ-Al2O3 for propane dehydrogenation[J]. RSC Advances, 2017, 7: 19841-19848.
|
21 |
OKAL J, ZAWADZKI M, TYLUS W. Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method[J]. Applied Catalysis B: Environmental, 2011, 101: 548-559.
|
22 |
STEFANOV P, TODOROVA, NAYDENOV A, et al. On the development of active and stable Pd-Co/γ-Al2O3, catalyst for complete oxidation of methane[J]. Chemical Engineering Journal, 2015, 266(8):329-338.
|
23 |
LI Y, FENG J, HE Y, et al. Controllable synthesis, structure, and catalytic activity of highly dispersed Pd catalyst supported on whisker-modified spherical alumina[J]. Industrial & Engineering Chemistry Research, 2015, 51(34): 11083-11090.
|
24 |
ZAWADZKI M, OKAL J. Synthesis and structure characterization of Ru nanoparticles stabilized by PVP or γ-Al2O3[J]. Materials Research Bulletin, 2008, 43: 3111-3121.
|
25 |
YUAN E, WU C, HOU X, et al. Synergistic effects of second metals on performance of (Co, Ag, Cu)-doped Pd/ Al2O3, catalysts for 2-ethyl-anthraquinone hydrogenation[J]. Journal of Catalysis, 2017, 347(10):79-88.
|
26 |
何志远. 蒽醌加氢反应钯基催化剂的研究[D]. 天津:天津大学, 2015.
|
|
HE Z Y. Study on Pd-based catalyst for anthraquinone hydrogenation reaction[D]. Tianjin: Tianjin University, 2015.
|
27 |
MOHAMMAD N, TURN S. Characterization of Ru/Q10 catalysts containing Zr or Mn and their activity for Fischer-Tropsch synthesis[J]. Fuel Processing Technology, 2015, 5: 1-10.
|