化工进展 ›› 2021, Vol. 40 ›› Issue (1): 247-258.DOI: 10.16085/j.issn.1000-6613.2020-0432
吕斌1,2(), 郭旭1,2, 高党鸽1,2(), 马建中1,2, 麻冬3
收稿日期:
2020-03-23
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
高党鸽
作者简介:
吕斌(1980—),男,博士,教授,博士生导师,研究方向为有机-无机纳米复合材料。E-mail:基金资助:
Bin LYU1,2(), Xu GUO1,2, Dangge GAO1,2(), Jianzhong MA1,2, Dong MA3
Received:
2020-03-23
Online:
2021-01-05
Published:
2021-01-12
Contact:
Dangge GAO
摘要:
钙钛矿量子点具有发光谱带较窄、发光可调、量子效率高等优异的光学性能,在发光二极管、激光发射器等领域广受关注。但是钙钛矿量子点由于强离子性、高表面能及表面配体易迁移等特性而对环境高度敏感,使其在实际应用中受到限制。本文简要介绍了钙钛矿量子点结构和不稳定的原因,综述了近年来提高钙钛矿量子点稳定性的主要方法,重点从离子掺杂、表面钝化、表面包覆及多重保护4个方面展开论述。最后从绿色环保的角度出发,对高稳定生物质基钙钛矿量子点材料的制备进行了展望,提出使用具有特定结构的生物质材料及其衍生材料取代传统石油基试剂作为配体、溶剂或吸附重金属离子的外壳材料,可加速钙钛矿量子点朝着绿色低毒的方向发展。
中图分类号:
吕斌, 郭旭, 高党鸽, 马建中, 麻冬. 提高钙钛矿量子点稳定性的研究进展[J]. 化工进展, 2021, 40(1): 247-258.
Bin LYU, Xu GUO, Dangge GAO, Jianzhong MA, Dong MA. Research progress on the improvement of the stability of perovskite quantum dots[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 247-258.
1 | ROSE G. Beschreibung einiger neuen mineralien des urals[J]. Annalen der Physik, 1839, 124(12): 551-573. |
2 | 王汝成, 徐士进, 陆建军, 等. 钙钛矿族矿物的晶体化学分类和地球化学演化[J]. 地学前缘, 2000, 7(2): 457-465. |
WANG Rucheng, XU Shijin, LU Jianjun, et al. Crystal-chemistry and geochemistry of perovskite-group minerals[J]. Earth Science Frontiers, 2000, 7(2): 457-465. | |
3 | WELLS H L. Über die cäsium-und kalium-bleihalogenide[J]. Zeitschrift Für Anorganische Chemie, 1893, 3(1): 195-210. |
4 | KOJIMA A, TESHIMA K, SHIRAL Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
5 | IM J H, LEE C R, LEE J W, et al. 6.5% Efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088-4093. |
6 | 韦祎, 陈叶青, 程子泳, 等. 如何提升铅卤钙钛矿量子点的稳定性[J]. 中国科学: 化学, 2018, 48(8): 9-27. |
WEI Yi, CHEN Yeqin, CHENG Ziyong, et al. How to enhance the stability of lead halide perovskite quantum dots?[J]. Scientla Sinica Chimica, 2018, 48(8): 9-27. | |
7 | LIN K, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20%[J]. Nature, 2018, 562(7726): 245-248. |
8 | YANG G L, ZHONG H Z. Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications[J]. Chinese Chemical Letters, 2016, 27(8): 1124-1130. |
9 | GOLDSCHIDT V M. Geochemische verteilungsgesetze der elemente. skrifter norske videnskaps[J]. Akad. Oslo I. Mat-Nat. K1, 1926, 8(6/7): 112-117. |
10 | BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693. |
11 | TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chemical Science, 2016, 7(7): 4548-4556. |
12 | PROTESESCU L, YAKUNIN S, KUMAR S, et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals[J]. ACS Nano, 2017, 11(3): 3119-3134. |
13 | MEYNS M, PERALVAREZ M, HEUER J A, et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs[J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19579-19586. |
14 | LIN J, GOMEZ L D, WEERD C, et al. Direct observation of band structure modifications in nanocrystals of CsPbBr3 perovskite[J]. Nano Letters, 2016, 16(11): 7198-7202. |
15 | ZHANG M, YU H, LYU M, et al. Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films[J]. Chemical Communications, 2014, 50(79): 11727-11730. |
16 | CHEN J, LIU D, AL-MARRIi M J, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application[J]. Science China Materials, 2016, 59(9): 719-727. |
17 | LI J, XU L, WANG T, et al. 50-Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control[J]. Advanced Materials, 2017, 29(5): 1603885. |
18 | ZHANG M, TIAN Z Q, ZHU D L, et al. Stable CsPbBr3 perovskite quantum dots with high fluorescence quantum yields[J]. New Journal of Chemistry, 2018, 42(12): 9496-9500. |
19 | DE ROO J, IBÁŇEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016, 10(2): 2071-2081. |
20 | CHEN M, JU M G, GARCES H F, et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation[J]. Nature Communications, 2019, 10(1): 16. |
21 | LINABURG M R, MCLURE E T, MAJHER J D, et al. Cs1-xRbxPbCl3 and Cs1-xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites[J]. Chemistry of Materials, 2017, 29(8): 3507-3514. |
22 | BAEK S, KIM S, NOH J Y, et al. Development of mixed-cation CsxRb1-xPbX3 perovskite quantum dots and their full-color film with high stability and wide color gamut[J]. Advanced Optical Materials, 2018, 6(15): 1800295. |
23 | WU H, YANG Y, ZHOU D, et al. Rb+ cations enable the change of luminescence properties in perovskite (RbxCs1-xPbBr3) quantum dots[J]. Nanoscale, 2018, 10(7): 3429-3437. |
24 | LIU Y, PAN G, WANG R, et al. Considerably enhanced exciton emission of CsPbCl3 perovskite quantum dots by the introduction of potassium and lanthanide ions[J]. Nanoscale, 2018, 10(29): 14067-14072. |
25 | HUANG S, WANG B, ZHANG Q, et al. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals[J]. Advanced Optical Materials, 2018, 6(6): 1701106. |
26 | KIM J, LEE S C, LEE S H, et al. Importance of orbital interactions in determining electronic band structures of organo-lead iodide[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4627-4634. |
27 | SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 2016, 9(6): 1989-1997. |
28 | GKINI K, ANTONIADOU M, BALIS N, et al. Mixing cations and halide anions in perovskite solar cells[J]. Materials Today: Proceedings, 2019, 19: 73-78. |
29 | TOSADO G A, LIN Y Y, ZHENG E, et al. Impact of cesium on the phase and device stability of triple cation Pb-Sn double halide perovskite films and solar cells[J]. Journal of Materials Chemistry A, 2018, 6(36): 17426-17436. |
30 | BRENNER P, Glöckler T, RUEDA-DELGADO D, et al. Triple cation mixed-halide perovskites for tunable lasers[J]. Optical Materials Express, 2017, 7(11): 4082-4094. |
31 | ZHOU Y, CHEN J, BAKR O M, et al. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications[J]. Chemistry of Materials, 2018, 30(19): 6589-6613. |
32 | LIU W, LIN Q, LI H, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45): 14954-14961. |
33 | PAROBEK D, ROMAN B J, DONG Y, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Letters, 2016, 16(12): 7376-7380. |
34 | LIU H, WU Z, SHAO J, et al. CsPbxMn1-xCl3 perovskite quantum dots with high Mn substitution ratio[J]. ACS Nano, 2017, 11(2): 2239-2247. |
35 | DONG L, CHEN Z, YE L, et al. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission[J]. Nano Research, 2019, 12(7): 1733-1738. |
36 | ZOU S, LIU Y, LI J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 139(33): 11443-11450. |
37 | PAROBEK D, DONG Y, QIAO T, et al. Direct hot-injection synthesis of Mn-doped CsPbBr3 nanocrystals[J]. Chemistry of Materials, 2018, 30(9): 2939-2944. |
38 | FEI L, YUAN X, HUA J, et al. Enhanced luminescence and energy transfer in Mn2+ doped CsPbCl3-xBrx perovskite nanocrystals[J]. Nanoscale, 2018, 10(41): 19435-19442. |
39 | WEI Q, LI M, ZHANG Z, et al. Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals[J]. Nano Energy, 2018, 51: 704-710. |
40 | LOZHKINA O A, MURASHKINA A A, SHILOVSKIKH V V, et al. Invalidity of band-gap engineering concept for Bi3+ heterovalent doping in CsPbBr3 halide perovskite[J]. The Journal of Physical Chemistry Letters, 2018, 9(18): 5408-5411. |
41 | ZHOU Y, YONG Z J, ZHANG K C, et al. Ultrabroad photoluminescence and electroluminescence at new wavelengths from doped organometal halide perovskites[J]. The Journal of Physical Chemistry Letters, 2016, 7(14): 2735-2741. |
42 | NAVAS J, SANCHEZ-CORONILLA A, GALLARDO J J, et al. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. an experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+[J]. Nanoscale, 2015, 7(14): 6216-6229. |
43 | LIANG J, ZHAO P, WANG C, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. Journal of the American Chemical Society, 2017, 139(40): 14009-14012. |
44 | HU Y, ZHANG X, YANG C, et al. Fe2+ doped in CsPbCl3 perovskite nanocrystals: impact on the luminescence and magnetic properties[J]. RSC Advances, 2019, 9(57): 33017-33022. |
45 | ZOU S, YANG G, YANG T, et al. Template-free synthesis of high-yield Fe-doped cesium lead halide perovskite ultralong microwires with enhanced two-photon absorption[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 4878-4885. |
46 | ZHANG X, WANG Q, JIN Z, et al. Stable ultra-fast broad-bandwidth photodetectors based on α-CsPbI3 perovskite and NaYF4: Yb, Er quantum dots[J]. Nanoscale, 2017, 9(19): 6278-6285. |
47 | YUAN R, LIU J, ZHANG H, et al. Eu3+-doped CsPbBr1.5I1.5 quantum dots glasses: a strong competitor among red fluorescence solid materials[J]. Journal of the American Ceramic Society, 2018, 101(11): 4927-4932. |
48 | WU L, ZHONG Q, YANG D, et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand[J]. Langmuir, 2017, 33(44): 12689-12696. |
49 | XUAN T, YANG X, LOU S, et al. Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes[J]. Nanoscale, 2017, 9(40): 15286-15290. |
50 | LIU F, ZHANG Y, DING C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield[J]. ACS Nano, 2017, 11(10): 10373-10383. |
51 | CHIBA T, HAYASHI Y, EBE H, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices[J]. Nature Photonics, 2018, 12(11): 681-687. |
52 | LI Z, KONG L, HUANG S, et al. Highly luminescent and ultrastable CsPbBr3 perovskite quantum dots incorporated into a silica/alumina monolith[J]. Angewandte Chemie: International Edition, 2017, 56(28): 8134-8138. |
53 | KOSCHER B A, SWABECK J K, BRONSTEIN N D, et al. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment[J]. Journal of the American Chemical Society, 2017, 139(19): 6566-6569. |
54 | LOU Y, NIU Y, YANG D, et al. Rod-shaped thiocyanate-induced abnormal band gap broadening in SCN-doped CsPbBr3 perovskite nanocrystals[J]. Nano Research, 2018, 11(5): 2715-2723. |
55 | FANG X, DING J, YUAN N, et al. Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 6057-6063. |
56 | ZHAO H, BENETTI D, TONG X, et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots[J]. Nano Energy, 2018, 50: 756-765. |
57 | HUANG H, CHEN B, WANG Z, et al. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices[J]. Chemical Science, 2016, 7(9): 5699-5703. |
58 | JIANG G, GUHRENZ C, KIRCH A, et al. Highly luminescent and water-resistant CsPbBr3-CsPb2Br5 perovskite nanocrystals coordinated with partially hydrolyzed poly(methyl methacrylate) and polyethylenimine[J]. ACS Nano, 2019, 13(9): 10386-10396. |
59 | YANG D, LI X, ZHOU W, et al. CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification[J]. Advanced Materials, 2019, 31(30): 1900767. |
60 | KONTOS A G, KALTZOGLOU A, SIRANIDI E, et al. Structural stability, vibrational properties, and photoluminescence in CsSnI3 perovskite upon the addition of SnF2[J]. Inorganic Chemistry, 2016, 56(1): 84-91. |
61 | WANG A, GUO Y, MUHAMMAD F, et al. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability[J]. Chemistry of Materials, 2017, 29(15): 6493-6501. |
62 | 洪秀萍, 梁汉东, 马步君. 贺兰山北段羊氟中毒区氟污染研究[J]. 地球与环境, 2019, 9(5): 644-652. |
HONG Xiuping, LIANG Handong, MA Bujun. Study on fluoride pollution in sheep fluorosis area in the north of helan mountain[J]. Earth and Environment, 2019, 9(5): 644-652. | |
63 | KUMA A, RAWAT S S, SWAMI S K, et al. Benzoyl halide as alternative precursor for synthesis of lead free double perovskite Cs3Bi2Br9 nanocrystals[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6): 3802-3808. |
64 | 樊钦华, 祖延清, 李璐, 等. 发光铅卤钙钛矿纳米晶稳定性的研究进展[J]. 物理学报, 2020, 69(11): 118501. |
FAN Qinhua, ZU Yanqing, LI Lu, et al. Research progress of stability of luminous lead halide perovskite nanocrystals[J]. Acta Physica Sinica, 2020, 69(11): 118501. | |
65 | BI C, KERSHAW S V, ROGACH A L, et al. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol[J]. Advanced Functional Materials, 2019, 29(29): 1902446. |
66 | ZENG F, YANG M, QIN J, et al. Ultrastable luminescent organic-inorganic perovskite quantum dots via surface engineering: coordination of methylammonium bromide and covalent silica encapsulation[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42837-42843. |
67 | YANG M, PENG H, ZENG F, et al. In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability[J]. Journal of Colloid and Interface Science, 2018, 509: 32-38. |
68 | HUANG S, LI Z, KONG L, et al. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene[J]. Journal of the American Chemical Society, 2016, 138(18): 5749-5752. |
69 | LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat[J]. Angewandte Chemie: International Edition, 2017, 56(36): 10696-10701. |
70 | LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals[J]. Advanced Functional Materials, 2018, 28(1): 1704288. |
71 | SUN J Y, RABOUW F T, YANG X F, et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X=Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application[J]. Advanced Functional Materials, 2017, 27(45): 1704371. |
72 | CHEN Z, GU Z G, FU W Q, et al. A confined fabrication of perovskite quantum dots in oriented MOF thin film[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28737-28742. |
73 | ZHANG D, XU Y, LIU Q, et al. Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection[J]. Inorganic Chemistry, 2018, 57(8): 4613-4619. |
74 | HE H, CUI Y, LI B, et al. Confinement of Perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence[J]. Advanced Materials, 2019, 31(6): 1806897. |
75 | WAN S, OU M, ZHONG Q, et al. Perovskite-type CsPbBr3 quantum dots/UiO-66(NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction[J]. Chemical Engineering Journal, 2019, 358: 1287-1295. |
76 | WU T, LIU X, LIU Y, et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation[J]. Coordination Chemistry Reviews, 2020, 403: 213097. |
77 | WU L Y, MU Y F, GUO X X, et al. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction[J]. Angewandte Chemie: International Edition, 2019, 58(28): 9491-9495. |
78 | AKKERMAN Q A, PARK S, RADICCHI E, et al. Nearly monodisperse insulator Cs4PbX6 (X= Cl, Br, I) nanocrystals, their mixed halide compositions, and their transformation into CsPbX3 nanocrystals[J]. Nano Letters, 2017, 17(3): 1924-1930. |
79 | WU L, HU H, XU Y, et al. From nonluminescent Cs4PbX6 (X= Cl, Br, I) nanocrystals to highly luminescent CsPbX3 nanocrystals: water-triggered transformation through a CsX-stripping mechanism[J]. Nano Letters, 2017, 17(9): 5799-5804. |
80 | YU X, WU L, HU H, et al. Cs4PbX6 (X= Cl, Br, I) nanocrystals: preparation, water-triggered transformation behavior, and anti-counterfeiting application[J]. Langmuir, 2018, 34(35): 10363-10370. |
81 | XU L, CHEN J, SONG J, et al. Double-protected all-inorganic perovskite nanocrystals by crystalline matrix and silica for triple-modal anti-counterfeiting Codes[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26556-26564. |
82 | TANG Y, CAO X, HONARFAR A, et al. Inorganic ions assisted the anisotropic growth of CsPbCl3 nanowires with surface passivation effect[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29574-29582. |
83 | YANG S, CHEN S, MOSCONI E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts[J]. Science, 2019, 365(6452): 473-478. |
84 | DI X, HU Z, JIANG J, et al. Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs[J]. Chemical Communications, 2017, 53(80): 11068-11071. |
85 | AI B, LIU C, WANG J, et al. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses[J]. Journal of the American Ceramic Society, 2016, 99(9): 2875-2877. |
86 | WEI Y, DENG X, XIE Z, et al. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance[J]. Advanced Functional Materials, 2017, 27(39): 1703535. |
87 | LIANG X, CHEN M, WANG Q, et al. Ethanol-precipitable, silica-passivated perovskite nanocrystals incorporated into polystyrene microspheres for long-term storage and reusage[J]. Angewandte Chemie, 2019, 131(9): 2825-2829. |
88 | PARK J, MURALI G, KWON B, et al. Mussel-inspired polymer grafting on CsPbBr3 perovskite quantum dots enhancing the environmental stability[J]. Particle & Particle Systems Characterization, 2019, 36(12): 1900332. |
89 | ZHANG H, WANG X, LIAO Q, et al. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging[J]. Advanced Functional Materials, 2017, 27(7): 1604382. |
90 | ZHANG M, WANG M, YANG Z, et al. Preparation of all-inorganic perovskite quantum dots-polymer composite for white LEDs application[J]. Journal of Alloys and Compounds, 2018, 748: 537-545. |
91 | AN H, KIM W K, WU C, et al. Highly-stable memristive devices based on poly(methylmethacrylate): CsPbCl3 perovskite quantum dot hybrid nanocomposites[J]. Organic Electronics, 2018, 56: 41-45. |
92 | XUAN T, HUANG J, LIU H, et al. Super-hydrophobic cesium lead halide perovskite quantum dot-polymer composites with high stability and luminescent efficiency for wide color gamut white light-emitting diodes[J]. Chemistry of Materials, 2019, 31(3): 1042-1047. |
93 | MEYNS M, PERÁLVAREZ M, HEUER-JUNGEMANN A, et al. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs[J]. ACS Applied Materials & Interfaces, 2016, 8(30): 19579-19586. |
94 | GIURI A, MASI S, LISTORTI A, et al. Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells[J]. Nano Energy, 2018, 54: 400-408. |
95 | ZHANG X, WANG H C, TANG A C, et al. Robust and stable narrow-band green emitter: an option for advanced wide-color-gamut backlight display[J]. Chemistry of Materials, 2016, 28(23): 8493-8497. |
96 | WANG A, GUO Y, MUHAMMAD, et al. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability[J]. Chemistry of Materials, 2017, 29(15): 6493-6501. |
[1] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[2] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[3] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[4] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[5] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[6] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[7] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[8] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[9] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[10] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[11] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[12] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[13] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[14] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[15] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |