1 | COSTAS M. Selective C—H oxidation catalyzed by metalloporphyrins[J]. Coordination Chemistry Reviews, 2011, 255(23/24): 2912-2932. | 2 | ZHOU M, CRABTREE R H. C—H oxidation by platinum group metal oxo or peroxo species[J]. Chemical Society Reviews, 2011, 40(4): 1875-1884. | 3 | XU S D, LI H X, DU J, et al. Subnanometric gold clusters on CeO2 with maximized strong metal-support interactions for aerobic oxidation of carbon-hydrogen bonds[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6418-6424. | 4 | KWAPIEN K, PAIER J, SAUER J, et al. Sites for methane activation on lithium-doped magnesium oxide surfaces[J]. Angewandte Chemie: International Edition, 2014, 53(33): 8774-8778. | 5 | GUO X G, FANG G Z, LI G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184): 616-619. | 6 | CHE C M, LO V K Y, ZHOU C Y, et al. Selective functionalisation of saturated C—H bonds with metalloporphyrin catalysts[J]. Chemical Society Reviews, 2011, 40(4): 1950-1975. | 7 | 沈海民, 王岩, 佘远斌. 金属卟啉催化氧化环己烷最新研究进展[J]. 化工进展, 2018, 37(6): 2031-2045. | 7 | SHEN H M, WANG Y, SHE Y B. Recent advances in the oxidation of cyclohexane catalyzed by metalloporphyrins[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2031-2045. | 8 | 魏璐, 佘远斌, 于艳敏, 等. 四苯基铁卟啉双氧加合物的密度泛函理论研究[J]. 科学技术与工程, 2012, 12(22): 5419-5423, 5428. | 8 | WEI L, SHE Y B, YU Y M, et al. A DFT investigation on the dioxygen adduct of iron tetraphenylporphyrin[J]. Science Technology and Engineering, 2012, 12(22): 5419-5423, 5428. | 9 | BAGLIA R A, ZARAGOZA J P T, GOLDBERG D P. Biomimetic reactivity of oxygen-derived manganese and iron porphyrinoid complexes[J]. Chemical Reviews, 2017, 117(21): 13320-13352. | 10 | HUANG X Y, GROVES J T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins[J]. Chemical Reviews, 2018, 118(5): 2491-2553. | 11 | HIROTO S, MIYAKE Y, SHINOKUBO H. Synthesis and functionalization of porphyrins through organometallic methodologies[J]. Chemical Reviews, 2017, 117(4): 2910-3043. | 12 | LIU W, GROVES J T. Manganese catalyzed C—H halogenation[J]. Accounts of Chemical Research, 2015, 48(6): 1727-1735. | 13 | HUANG G, GUO C C, TANG S S. Catalysis of cyclohexane oxidation with air using various chitosan-supported metallotetraphenylporphyrin complexes[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(1): 125-130. | 14 | GUO C C, LIU X Q, LIU Q, et al. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies[J]. Journal of Porphyrins and Phthalocyanines, 2009, 13(12): 1250-1254. | 15 | GUO C C, LIU Q, WANG X T, et al. Selective liquid phase oxidation of toluene with air[J]. Applied Catalysis A: General, 2005, 282(1/2): 55-59. | 16 | HUANG G, LUO J, DENG C C, et al. Catalytic oxidation of toluene with molecular oxygen over manganese tetraphenylporphyrin supported on chitosan[J]. Applied Catalysis A: General, 2008, 338(1/2): 83-86. | 17 | POULOS T L. Heme enzyme structure and function[J]. Chemical Reviews, 2014, 114(7): 3919-3962. | 18 | HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): B864-B871. | 19 | KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138. | 20 | DORIGO A E, HOUK K N. The origin of proximity effects on reactivity: a modified MM2 model for the rates of acid-catalyzed lactonizations of hydroxy acids[J]. Journal of the American Chemical Society, 1987, 109(12): 3698-3708. | 21 | DEWAR M J S. The semiempirical approach to chemistry[J]. International Journal of Quantum Chemistry, 1992, 44(4): 427-447. | 22 | VENKATRAMAIAH N, PEREIRA C F, MENDES R F, et al. Phosphonate appended porphyrins as versatile chemosensors for selective detection of trinitrotoluene[J]. Analytical Chemistry, 2015, 87(8): 4515-4522. | 23 | SWAMY P C A, THILAGAR P. Polyfunctional lewis acids: intriguing solid-state structure and selective detection and discrimination of nitroaromatic explosives[J]. Chemistry: A European Journal, 2015, 21(24): 8874-8882. | 24 | LEE C T, YANG W T, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789. | 25 | BECKE A D. Density-functional thermochemistry.Ⅲ. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652. | 26 | CHAI J D, HEAD-GORDON M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections[J]. Physical Chemistry Chemical Physics, 2008, 10(44): 6615-6620. | 27 | CHEN H, IKEDA-SAITO M, SHAIK S. Nature of the Fe—O2 bonding in oxy-myoglobin: effect of the protein[J]. Journal of the American Chemical Society, 2008, 130(44): 14778-14790. | 28 | ERIKSSON E S E, ERIKSSON L A. Predictive power of long-range corrected functionals on the spectroscopic properties of tetrapyrrole derivatives for photodynamic therapy[J]. Physical Chemistry Chemical Physics, 2011, 13(15): 7207-7217. | 29 | WEI L, SHE Y B, YU Y M, et al. Substituent effects on geometric and electronic properties of iron tetraphenylporphyrin: a DFT investigation[J]. Journal of Molecular Modeling, 2012, 18(6): 2483-2491. | 30 | GHOSH A, MOBIN S M, FROHLICH R, et al. Effect of five membered versus six membered meso-substituents on structure and electronic properties of Mg() porphyrins: a combined experimental and theoretical study[J]. Inorganic Chemistry, 2010, 49(18): 8287-8297. | 31 | PAMIN K, TABOR E, GORECKA S, et al. Three generations of cobalt porphyrins as catalysts in the oxidation of cycloalkanes[J]. ChemSusChem, 2019, 12(3): 684-691. | 32 | RICCIARDI G, BAERENDS E J, ROSA A. Charge effects on the reactivity of oxoiron(Ⅳ) porphyrin species: a DFT analysis of methane hydroxylation by polycationic Compound Ⅰ and Compound mimics[J]. ACS Catalysis, 2016, 6(2): 568-579. | 33 | TAI C K, CHUANG W H, WANG B C. Substituted group and side chain effects for the porphyrin and zinc()-porphyrin derivatives: a DFT and TD-DFT study[J]. Journal of Luminescence, 2013, 142: 8-16. | 34 | 曹梅娟, 于艳敏, 付海燕, 等. 取代基及中心金属离子对卟啉电子结构及催化活性的影响[J]. 化工学报, 2013, 64(S1): 88-97. | 34 | CAO M J, YU Y M, FU H Y, et al. Effect of substituents and central metal ions on electronic structure and catalytic activity of porphyrins[J]. CIESC Journal, 2013, 64(S1): 88-97. | 35 | FENG Z, XIE Y J, HAO F, et al. Catalytic oxidation of cyclohexane by substituted metalloporphyrins: experimental and molecular simulation[J]. RSC Advances, 2015, 5(123): 101593-101598. | 36 | PATRA R, SAHOO D, DEY S, et al. Switching orientation of two axial imidazole ligands between parallel and perpendicular in low-spin Fe() and Fe() nonplanar porphyrinates[J]. Inorganic Chemistry, 2012, 51(21): 11294-11305. | 37 | KAVOUSI H, REZAEIFARD A, RAISSI H, et al. A DFT investigation of axial N-donor ligands effects on the high valent manganese-oxo meso-tetraphenyl porphyrin[J]. Journal of Porphyrins and Phthalocyanines, 2015, 19(5): 651-662. | 38 | DAS P K, CHATTERJEE S, SAMANTA S, et al. EPR, resonance raman, and DFT calculations on thiolate- and imidazole-bound iron() porphyrin complexes: role of the axial ligand in tuning the electronic structure[J]. Inorganic Chemistry, 2012, 51(20): 10704-10714. | 39 | BARBOSA I A, DE SOUSA P C, SILVA D L DA, et al. Metalloporphyrins immobilized in Fe3O4@SiO2 mesoporous submicrospheres: reusable biomimetic catalysts for hydrocarbon oxidation[J]. Journal of Colloid and Interface Science, 2016, 469: 296-309. | 40 | ZADEHAHMADI F, TANGESTANINEJAD S, MOGHADAM M, et al. Manganese() tetrapyridylporphyrin-chloromethylated MIL-101 hybrid material: a highly active catalyst for oxidation of hydrocarbons[J]. Applied Catalysis A: General, 2014, 477: 34-41. | 41 | POPOWSKI Y, GOLDBERG I, KOL M. The stereoselectivity of bipyrrolidine-based sequential polydentate ligands around Ru()[J]. Chemical Communications, 2016, 52(51): 7932-7934. | 42 | FU B, YU H C, HUANG J W, et al. Mn() porphyrins immobilized on magnetic polymer nanospheres as biomimetic catalysts hydroxylating cyclohexane with molecular oxygen[J]. Journal of Molecular Catalysis A: Chemical, 2009, 298(1/2): 74-80. | 43 | TABOR E, POLTOWICZ J, PAMIN K, et al. Influence of substituents in meso-aryl groups of iron μ-oxo porphyrins on their catalytic activity in the oxidation of cycloalkanes[J]. Polyhedron, 2016, 119: 342-349. | 44 | KEPP K P. Heme: from quantum spin crossover to oxygen manager of life[J]. Coordination Chemistry Reviews, 2017, 344: 363-374. | 45 | ALI M E, SANYAL B, OPPENEER P M. Electronic structure, spin-states, and spin-crossover reaction of heme-related Fe-porphyrins: a theoretical perspective[J]. Journal of Physical Chemistry B, 2012, 116(20): 5849-5859. | 46 | PHUNG Q M, PIERLOOT K. The dioxygen adducts of iron and manganese porphyrins: electronic structure and binding energy[J]. Physical Chemistry Chemical Physics, 2018, 20(25): 17009-17019. | 47 | PAULING L, CORYELL C D. The magnetic properties and structure of hemoglobin and carbonmonooxyhemoglobin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1936, 22(4): 210-216. | 48 | MCCLURE D S. Electronic structure of transition-metal complex ions[J]. Radiation Research Supplement, 1960, 2: 218-242. | 49 | GODDARD W A, OLAFSON B D. Ozone model for bonding of an O2 to heme in oxyhemoglobin[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(6): 2335-2339. | 50 | WEISS J J. Nature of the iron-oxygen bond in oxyhaemoglobin[J]. Nature, 1964, 202: 83-84. | 51 | SCHUTH N, MEBS S, HUWALD D, et al. Effective intermediate-spin iron in O2-transporting heme proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): 8556-8561. | 52 | JENSEN K P, ROOS B O, RYDE U. O2-binding to heme: electronic structure and spectrum of oxyheme, studied by multiconfigurational methods[J]. Journal of Inorganic Biochemistry, 2005, 99(1): 45-54. | 53 | WILSON S A, GREEN E, MATHEWS I I, et al. X-ray absorption spectroscopic investigation of the electronic structure differences in solution and crystalline oxyhemoglobin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16333-16338. | 54 | RUTKOWSKA-ZBIK D, TOKARZ-SOBIERAJ R, WITKO M. Quantum chemical description of oxygen activation process on Co, Mn, and Mo porphyrins[J]. Journal of Chemical Theory and Computation, 2007, 3(3): 914-920. | 55 | RUTKOWSKA-ZBIK D, WITKO M. From activation of dioxygen to formation of high-valent oxo species: ab initio DFT studies[J]. Journal of Molecular Catalysis A: Chemical, 2007, 275(1/2): 113-120. | 56 | LIU N, WEI D, JIANG G F, et al. Theoretical investigation of steric and electronic effects of meso-phenyl on Co-porphyrin catalyzed activation of dioxygen[J]. Asian Journal of Chemistry, 2014, 26(8): 2267-2270. | 57 | SUN Y, HU X B, LI H R, et al. Metalloporphyrin-dioxygen interactions and the effects of neutral axial ligands[J]. Journal of Physical Chemistry C, 2009, 113(32): 14316-14323. | 58 | BERRYMAN V E J, BAKER M G, BOYD R J. Effect of amino acid ligands on the structure of iron porphyrins and their ability to bind oxygen[J]. Journal of Physical Chemistry A, 2014, 118(25): 4565-4574. | 59 | FU H Y, CAO M J, SHE Y B, et al. Electronic effects of the substituent on the dioxygen-activating abilities of substituted iron tetraphenylporphyrins: a theoretical study[J]. Journal of Molecular Modeling, 2015, 21(4): 92. | 60 | GROVES J T, VANDERPUY M. Stereospecific aliphatic hydroxylation by iron-hydrogen peroxide. evidence for a stepwise process[J]. Journal of the American Chemical Society, 1976, 98(17): 5290-5297. | 61 | GROVES J T, SUBRAMANIAN D V. Hydroxylation by cytochrome P-450 and metalloporphyrin models. evidence for allylic rearrangement[J]. Journal of the American Chemical Society, 1984, 106(7): 2177-2181. | 62 | GROVES J T. Key elements of the chemistry of cytochrome P-450: the oxygen rebound mechanism[J]. Journal of Chemical Education, 1985, 62(11): 928-931. | 63 | GROVES J T, MCCLUSKY G A. Aliphatic hydroxylation via oxygen rebound. oxygen transfer catalyzed by iron[J]. Journal of the American Chemical Society, 1976, 98(3): 859-861. | 64 | SHAIK S, KUMAR D, DE VISSER S P, et al. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes[J]. Chemical Reviews, 2005, 105(6): 2279-2328. | 65 | OGLIARO F, HARRIS N, COHEN S, et al. A model “rebound” mechanism of hydroxylation by cytochrome P450: stepwise and effectively concerted pathways, and their reactivity patterns[J]. Journal of the American Chemical Society, 2000, 122(37): 8977-8989. | 66 | SHAIK S, FILATOV M, SCHRODER D, et al. Electronic structure makes a difference: cytochrome P-450 mediated hydroxylations of hydrocarbons as a two-state reactivity paradigm[J]. Chemistry:A European Journal, 1998, 4(2): 193-199. | 67 | SHAIK S, HIRAO H, KUMAR D. Reactivity of high-valent iron-oxo species in enzymes and synthetic reagents: a tale of many states[J]. Accounts of Chemical Research, 2007, 40(7): 532-542. | 68 | SHAIK S, CHEN H, JANARDANAN D. Exchange-enhanced reactivity in bond activation by metal-oxo enzymes and synthetic reagents[J]. Nature Chemistry, 2011, 3(1): 19-27. | 69 | SHAIK S, KUMAR D, DE VISSER S P. A valence bond modeling of trends in hydrogen abstraction barriers and transition states of hydroxylation reactions catalyzed by cytochrome P450 enzymes[J]. Journal of the American Chemical Society, 2008, 130(31): 10128-10140. | 70 | CAO M J, SHE Y B, FU H Y, et al. Rate-limiting step of the iron porphyrin-catalysed oxidation of cyclohexane to adipic acid by DFT method[J]. Molecular Simulation, 2015, 41(4): 262-270. | 71 | MITTRA K, GREEN M T. Reduction potentials of P450 compounds I and Ⅱ: insight into the thermodynamics of C—H bond activation[J]. Journal of the American Chemical Society, 2019, 141(13): 5504-5510. | 72 | RICCIARELLI D, PHUNG Q M, BELPASSI L, et al. Understanding the reactivity of Mn-oxo porphyrins for substrate hydroxylation: theoretical predictions and experimental evidence reconciled[J]. Inorganic Chemistry, 2019, 58(11): 7345-7356. | 73 | HU X B, LI H R, WU T. Approaching and bond breaking energies in the C—H activation and their application in catalyst design[J]. Journal of Physical Chemistry A, 2011, 115(5): 904-910. | 74 | KANG Y, CHEN H, JEONG Y J, et al. Enhanced reactivities of iron(Ⅳ)-oxo porphyrin π-cation radicals in oxygenation reactions by electron-donating axial ligands[J]. Chemistry:A European Journal, 2009, 15(39): 10039-10046. | 75 | DE VISSER S P, KUMAR D, COHEN S, et al. A predictive pattern of computed barriers for C—H hydroxylation by compound I of cytochrome P450[J]. Journal of the American Chemical Society, 2004, 126(27): 8362-8363. | 76 | ZHANG X Q, LIU Y F, WANG Y. The influence of the adjacent hydrogen bond on the hydroxylation processes mediated by cytochrome P450 side-chain cleavage enzyme[J]. Theoretical Chemistry Accounts, 2014, 133(6): 1485. | 77 | ALTUN A, GUALLAR V, FRIESNER R A, et al. The effect of heme environment on the hydrogen abstraction reaction of camphor in P450cam catalysis: a QM/MM study[J]. Journal of the American Chemical Society, 2006, 128(12): 3924-3925. | 78 | LAI R, LI H. Hydrogen abstraction of camphor catalyzed by cytochrome P450cam: a QM/MM study[J]. The Journal of Physical Chemistry B, 2016, 120(48): 12312-12320. | 79 | LI C S, SHAIK S. How do perfluorinated alkanoic acids elicit cytochrome P450 to catalyze methane hydroxylation? an MD and QM/MM study[J]. RSC Advances, 2013, 3(9): 2995-3005. | 80 | THELLAMUREGE N M, HIRAO H. Effect of protein environment within cytochrome P450cam evaluated using a polarizable-embedding QM/MM method[J]. Journal of Physical Chemistry B, 2014, 118(8): 2084-2092. | 81 | LU Q Q, SONG J S, WU P, et al. Mechanistic insights into the directing effect of Thr303 in ethanol oxidation by cytochrome P450 2E1[J]. ACS Catalysis, 2019, 9(6): 4892-4901. | 82 | REZAEIFARD A, KAVOUSI H, RAISSI H, et al. Significant hydrogen-bonding effect on the reactivity of high-valent manganese(Ⅴ)-oxo porphyrins in C—H bond activation: a DFT study[J]. Journal of Porphyrins and Phthalocyanines, 2015, 19(11): 1197-1203. | 83 | LIU W, CHENG M J, NIELSEN R J, et al. Probing the C—O bond-formation step in metalloporphyrin catalyzed C—H oxygenation reactions[J]. ACS Catalysis, 2017, 7(6): 4182-4188. | 84 | LONSDALE R, HARVEY J N, MULHOLLAND A J. Compound Ⅰ reactivity defines alkene oxidation selectivity in cytochrome P450cam[J]. Journal of Physical Chemistry B, 2010, 114(2): 1156-1162. | 85 | RUTKOWSKA-ZBIK D, WITKO M, SERWICKA E M. Allylic oxidation of cyclohexene catalyzed by manganese porphyrins: DFT studies[J]. Catalysis Today, 2011, 169(1): 10-15. | 86 | DE VISSER S P, OGLIARO F, SHARMA P K, et al. What factors affect the regioselectivity of oxidation by cytochrome P450? A DFT study of allylic hydroxylation and double bond epoxidation in a model reaction[J]. Journal of the American Chemical Society, 2002, 124(39): 11809-11826. | 87 | GUPTA R, LI X X, CHO K B, et al. Tunneling effect that changes the reaction pathway from epoxidation to hydroxylation in the oxidation of cyclohexene by a compound I model of cytochrome P450[J]. Journal of Physical Chemistry Letters, 2017, 8(7): 1557-1561. | 88 | BALCELLS D, RAYNAUD C, CRABTREE R H, et al. The rebound mechanism in catalytic C—H oxidation by MnO(tpp)Cl from DFT studies: electronic nature of the active species[J]. Chemical Communications, 2008, (6): 744-746. | 89 | BALCELLS D, RAYNAUD C, CRABTREE R H, et al. A rational basis for the axial igand effect in C—H oxidation by [MnO(porphyrin)(X)]+ (X=H2O, OH-, O2-) from a DFT study[J]. Inorganic Chemistry, 2008, 47(21): 10090-10099. | 90 | WANG Q M, CHEN X H, LI G J, et al. Computational exploration of chiral iron porphyrin-catalyzed asymmetric hydroxylation of ethylbenzene where stereoselectivity arises from π-π stacking interaction[J]. Journal of Organic Chemistry, 2019, 84(21): 13755-13763. | 91 | KUMAR D, SASTRY G N, DE VISSER S P. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(Ⅳ)-oxo complexes mimicking cytochrome P450 enzymes[J]. Journal of Physical Chemistry B, 2012, 116(1): 718-730. | 92 | HAZAN C, KUMAR D, DE VISSER S P, et al. A density functional study of the factors that influence the regioselectivity of toluene hydroxylation by cytochrome P450 enzymes[J]. European Journal of Inorganic Chemistry, 2007, 2007(18): 2966-2974. | 93 | DE VISSER S P. Substitution of hydrogen by deuterium changes the regioselectivity of ethylbenzene hydroxylation by an oxo-iron-porphyrin catalyst[J]. Chemistry: A European Journal, 2006, 12(31): 8168-8177. |
|