1 | WANG Y D, TAO Z C, WU B S, et al. Shape-controlled synthesis of Pt particles and their catalytic performances in the n-hexadecane hydroconversion[J]. Catalysis Today, 2016, 259: 331-339. | 2 | BAI G M, DAI H X, DENG J G, et al. Porous NiO nanoflowers and nanourchins: highly active catalysts for toluene combustion[J]. Catalysis Communications, 2012, 27: 148-153. | 3 | SHI F J, WANG F, DAI H X, et al. Rod-, flower-, and dumbbell-like MnO2: highly active catalysts for the combustion of toluene[J]. Applied Catalysis A: General, 2012, 433/434: 206-213. | 4 | 季豪克, 张雪洁, 王昊, 等. 多孔碳纳米球及其负载金属催化剂的研究进展[J]. 化工进展, 2019, 38(7): 3143-3152. | 4 | JI H K, ZHANG X J, WANG H, et al. Research progress of the porous carbon nanospheres and their supported metal catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3143-3152. | 5 | ZHU L H, ZHANG H, HU W W, et al. Nickel hydroxide-cobalt hydroxide nanoparticles-supported ruthenium-nickel-cobalt islands as an efficient nanocatalyst for hydrogenation reaction[J]. ChemCatChem, 2018, 10: 1998-2002. | 6 | MITSUI T, ROSE M K, FOMIN E, et al. Dissociative hydrogen adsorption on palladium requires aggregates of three or more vacancies[J]. Nature, 2003, 422(6933): 705-707. | 7 | RAO G R, MEHER S K, MISHRA B G, et al. Nature and catalytic activity of bimetallic CuNi particles on CeO2 support[J]. Catalysis Today, 2012, 198(1): 140-147. | 8 | ZHU L H, ZHENG T, ZHENG J B, et al. Synthesis of Ru/CoNi crystals with different morphologies for catalytic hydrogenation[J]. CrystEngComm, 2017, 19: 3430-3438. | 9 | ZHU L H, ZHENG T, ZHENG J B, et al. Shape control of nickel crystals and catalytic hydrogenation performance of ruthenium-on-Ni crystals[J]. CrystEngComm, 2018, 20: 113-121. | 10 | ZHU L H, ZHENG T, ZHENG J B, et al. Synthesis of novel platinum-on-flower-like nickel catalysts and their applications in hydrogenation reaction[J]. Applied Surface Science, 2017, 423: 836-844. | 11 | LI X F, WANG Z, MAO S J, et al. Insight into the role of additives in catalytic synthesis of cyclohexylamine from nitrobenzene[J]. Chinese Journal of Chemistry, 2018, 36(12): 1191-1196. | 12 | CHEN Y Z, KONG X Q, MAO S J, et al. Study of the role of alkaline sodium additive in selective hydrogenation of phenol[J]. Chinese Journal of Catalysis, 2019, 40(10): 1516-1524. | 13 | CHEN Y Z, WANG Z, MAO S J, et al. Rational design of hydrogenation catalysts using nitrogen-doped porous carbon[J]. Chinese Journal of Catalysis, 2019, 40(7): 971-979. | 14 | PRAKASH, M G, MAHALAKSHMY R, KRISHNAMURTHY K R, et al. Studies on Ni-M (M=Cu, Ag, Au) bimetallic catalysts for selective hydrogenation of cinnamaldehyde[J]. Catalysis Today, 2016, 263: 105-111. | 15 | WANG F, BI Y S, CHEN N, et al. In-situ synthesis of Ni nanoparticles confined within SiO2 networks with interparticle mesopores with enhanced selectivity for cinnamaldehyde hydrogenation[J]. Chemical Physics Letters, 2018, 711: 152-155. | 16 | HE S, LI C M, CHEN H, et al. A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability[J]. Chemistry of Materials, 2013, 25(7): 1040-1046. | 17 | GUPTA S S R, KANTAM M L. Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst[J]. Catalysis Today, 2018, 309: 189-194. | 18 | WU J, GAO G, LI J L, et al. Efficient and versatile CuNi alloy nanocatalysts for the highly selective hydrogenation of furfural[J]. Applied Catalysis B: Environmental, 2017, 203: 227-236. | 19 | STUDT F, ABILD-PEDERSEN F, WU Q X, et al. CO hydrogenation to methanol on Cu-Ni catalysts: theory and experiment[J]. Journal of Catalysis, 2012, 293: 51-60. | 20 | CHEN L C, LIN S D. The ethanol steam reforming over Cu-Ni/SiO2 catalysts: effect of Cu/Ni ratio[J]. Applied Catalysis B: Environmental, 2011, 106(3/4): 639-649. | 21 | ROGATIS L D, MONTINI T, COGNIGNI A, et al. Methane partial oxidation on NiCu-based catalysts[J]. Catalysis Today, 2009, 145(1/2): 176-185. | 22 | UNGUREANU A, DRAGOI B, CHIRIEAC A, et al. Composition-dependent morphostructural properties of Ni-Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3010-3025. | 23 | PANG S H, LOVE N E, MEDLIN J W. Synergistic effects of alloying and thiolate modification in furfural hydrogenation over Cu-based catalysts[J]. The Journal of Physical Chemistry Letters, 2014, 5(23): 4110-4114. | 24 | WU D F, TAN Q Q, HU L C. Shape-controlled synthesis of Cu-Ni nanocrystals[J]. Materials Chemistry and Physics, 2018, 206: 150-157. | 25 | CHARAN P H K, RAO G R, CHARAN P H K, et al. Synthesis of CuNi and CuNi/SBA-15 by aqueous method at room temperature and their catalytic activity[J]. Microporous and Mesoporous Materials, 2014, 200: 101-109. | 26 | BORAH B J, BHARALI P. Surfactant-free synthesis of CuNi nanocrystals and their application for catalytic reduction of 4-nitrophenol[J]. Journal of Molecular Catalysis A: Chemical, 2014, 390: 29-36. | 27 | DAI Y H, GAO X, CHU X F, et al. On the role of water in selective hydrogenation of cinnamaldehyde to cinnamyl alcohol on PtFe catalysts[J]. Journal of Catalysis, 2018, 364: 192-203. | 28 | ZHAO J, XU X L, LI X N, et al. Promotion of Sn on the Pd/AC catalyst for the selective hydrogenation of cinnamaldehyde[J]. Catalysis Communications, 2014, 43: 102-106. | 29 | ZHU J, DOU M D, LU M H, et al. Thermo-responsive polymer grafted carbon nanotubes as the catalyst support for selective hydrogenation of cinnamaldehyde: effects of surface chemistry on catalytic performance[J]. Applied Catalysis A: General, 2019, 575: 11-19. | 30 | FAN F Y, ZHANG Q, WANG X, et al. A structured Cu-based/γ-Al2O3/Al plate-type catalyst for steam reforming of dimethyl ether: self-activation behavior investigation and stability improvement[J]. Fuel, 2016, 186: 11-19. | 31 | BUSTAMANTE T M, FRAGA M A, FIERRO J L G, et al. Cobalt SiO2 core-shell catalysts for chemoselective hydrogenation of cinnamaldehyde[J]. Catalysis Today, 2019, doi:10.1016/j.cattod.2019.04.075. | 32 | WEI Z J, ZHU X M, LIU X S, et al. Pt-Re/rGO bimetallic catalyst for highly selective hydrogenation of cinnamaldehyde to cinnamylalcohol[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 369-378. | 33 | ZHU L H, JIANG Y Y, ZHENG J B, et al. Ultrafine nanoparticle-supported Ru nanoclusters with ultrahigh catalytic activity[J]. Small, 2015, 11(34): 4385-4393. | 34 | ZHU L H, ZHENG T, YU C L, et al. Platinum-nickel alloy nanoparticles supported on carbon for 3-pentanone hydrogenation[J]. Applied Surface Science, 2017, 409: 29-34. | 35 | ZHU L H, SUN H L, ZHENG J B, et al. Combining Ru, Ni and Ni(OH)2 active sites for improving catalytic performance in benzene hydrogenation[J]. Materials Chemistry and Physics, 2017, 192: 8-16. | 36 | ZHU L H, SHAN S Y, PETKOV V, et al. Ruthenium-nickel-nickel hydroxide nanoparticles for room temperature catalytic hydrogenation[J]. Journal of Materials Chemistry A, 2017, 5(17): 7869-7875. | 37 | KHZOUZ M, GKANAS E I, DU S F, et al. Catalytic performance of Ni-Cu/Al2O3 for effective syngas production by methanol steam reforming[J]. Fuel, 2018, 232: 672-683. | 38 | WANG H, XU R N, JIN Y, et al. Zeolite structure effects on Cu active center, SCR performance and stability of Cu-zeolite catalysts[J]. Catalysis Today, 2019, 327: 295-307. | 39 | 贾东森, 张国强, 尹娇, 等. 碳球表面缺陷密度对其负载铜催化剂甲醇氧化羰基化反应性能的影响[J]. 化工进展, 2019, 38(8): 3701-3710. | 39 | JIA D S, ZHANG G Q, YIN J, et al. Effect of surface defects density of carbon spheres on the catalytic performance of the supported Cu catalyst for oxidative carbonylation of methanol[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3701-3710. | 40 | LEE J H, LEE I G, PARK J Y, et al. Efficient upgrading of pyrolysis bio-oil over Ni-based catalysts in supercritical ethanol[J]. Fuel, 2019, 241: 207-217. | 41 | DOU J, ZHANG R G, HAO X B, et al. Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2019, 254: 612-623. | 42 | WANG W, WANG Y H, LIU S J, et al. Carbon-supported phosphatized CuNi nanoparticle catalysts for hydrazine electrooxidation[J]. International Journal of Hydrogen Energy, 2019, 44(21): 10637-10645. | 43 | ZHU L H, ZHANG H, ZHONG L F, et al. RuNiCo-based nanocatalysts with different nanostructures for naphthalene selective hydrogenation[J]. Fuel, 2018, 216: 208-217. | 44 | 胡凤腾, 姚建龙, 李小青, 等. Sr改性Cu催化剂的果糖加氢制备甘露醇性能[J]. 化工学报, 2019, 70(4): 1420-1428. | 44 | HU F T, YAO J L, LI X Q, et al. Properties of Sr modified Cu-based catalysts for hydrogenation of fructose to mannitol[J]. CIESC Journal, 2019, 70(4): 1420-1428. | 45 | CUI E T, LU G X. Enhanced surface electron transfer by fabricating a core/shell Ni@NiO cluster on TiO2 and its role on high efficient hydrogen generation under visible light irradiation[J]. International Journal of Hydrogen Energy, 2014, 39(17): 8959-8968. | 46 | NAGHASH A R, ETSELL T H, XU S. XRD and XPS study of Cu-Ni interactions on reduced copper-nickel-aluminum oxide solid solution catalysts[J]. Chemistry of Materials, 2006, 18(10): 2480-2488. | 47 | PAKHARUKOV I Y, PROSVIRIN I P, CHETYRIN I A, et al. In situ XPS studies of kinetic hysteresis in methane oxidation over Pt/γ-Al2O3 catalysts[J]. Catalysis Today, 2016, 278: 135-139. |
|