化工进展 ›› 2019, Vol. 38 ›› Issue (11): 5189-5199.DOI: 10.16085/j.issn.1000-6613.2019-0275
收稿日期:
2019-02-26
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
陈国华
作者简介:
陈国华(1967—),男,教授,博士生导师,研究方向为工业安全与风险评价技术、过程装备安全可靠性及风险评价技术。E-mail:基金资助:
Guohua CHEN(),Yixin ZHAO,Kongxing HUANG,Kun HU
Received:
2019-02-26
Online:
2019-11-05
Published:
2019-11-05
Contact:
Guohua CHEN
摘要:
爆炸碎片对化工储罐的侵彻作用破坏性极强,储罐保护层技术作为侵彻事故风险防控的重要手段却仍处于起步阶段。典型的保护层技术,如军事装甲技术研究已经较为成熟,可为储罐保护层技术发展提供重要的借鉴意义。本文系统分析了国内外有关化工储罐保护层及军事装甲防护侵彻损伤的相关文献,指出化工储罐保护层技术研究亟待解决的问题,并参考装甲技术研究进展提出其进一步研究方向:在材料选取方面应考虑防弹金属、陶瓷以及一些新兴材料的应用及耦合设计;在结构设计方面可以采用实验及数值模拟两种方法,研究储罐保护层层数、各层厚度比、各层排列顺序、层间间隙等诸多关键参数对储罐保护层抗侵彻性能的影响。通过对侵彻事故发生概率及事故后果严重程度两方面的表征,为储罐保护层技术在爆炸碎片多米诺效应事故风险防控中的应用提供参考。
中图分类号:
陈国华,赵一新,黄孔星,胡昆. 装甲抗侵彻技术研究进展及对化工储罐保护层风险防控的借鉴[J]. 化工进展, 2019, 38(11): 5189-5199.
Guohua CHEN,Yixin ZHAO,Kongxing HUANG,Kun HU. Research progress of armor technology in anti-penetration and its reference for risk pre-control of protective layer of chemical storage tanks[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5189-5199.
作者 | 年份 | 装甲材料 | 研究方法 | 研究结果 |
---|---|---|---|---|
朱锡等[ | 2003/ 2006 | 陶瓷/钢/玻璃纤维/芳纶纤维 | 实验 | ①同等防护性能的复合纤维防弹装甲结构较防弹钢减轻重量30%以上; ②抵御小口径火炮时,陶瓷/钢/纤维复合材料组合装甲比均质钢装甲可减轻约68% |
Shokrieh等[ | 2008 | 碳化硼陶瓷/Kevlar 49纤维复合材料 | Chocron-Galvez分析模型[ | 对于复合材料装甲,当冲击速度增长量略大于弹道速度时,弹丸剩余速度显著增加,当冲击速度大于弹道极限时,装甲系统吸能性能急剧下降 |
Medvedovski[ | 2010 | 氧化铝陶瓷/ZrO2/SiC/Si3N4/SiAlON | 实验 | 除致密的均质先进陶瓷外,具有最佳结构组成的异质材料也具有显著的弹道性能 |
Liu等[ | 2015/ 2016 | Al2O3陶瓷/Ti6Al4V/ UHMWPE/碳纤维/铝合板等复合装甲材料 | 实验/ABAQUS Explicit模拟 | 最外层Ti6Al4V为UHMWPE层提供支撑,有助于吸收或耗散冲击物能量,提高中间层UHMWPE的缓冲性能及能量平衡作用 |
Binar等[ | 2018 | 透明防弹玻璃 | Johnson-Cook模型/LS-DYNA模拟 | PVB材料强度对温度有相当大的依赖性 |
Fras等[ | 2019 | 超高强度钢(Mars? 300) | 实验/LS-DYNA模拟 | ①在温度高达700℃的目标靶板内部,形成一个环形的局部塑性变形带; ②在双向拉伸作用下,裂纹从板的背面开始萌生,裂纹通过局部塑性变形带向靶板的受冲击前表面传播 |
表1 不同装甲材料防弹丸侵彻研究对比
作者 | 年份 | 装甲材料 | 研究方法 | 研究结果 |
---|---|---|---|---|
朱锡等[ | 2003/ 2006 | 陶瓷/钢/玻璃纤维/芳纶纤维 | 实验 | ①同等防护性能的复合纤维防弹装甲结构较防弹钢减轻重量30%以上; ②抵御小口径火炮时,陶瓷/钢/纤维复合材料组合装甲比均质钢装甲可减轻约68% |
Shokrieh等[ | 2008 | 碳化硼陶瓷/Kevlar 49纤维复合材料 | Chocron-Galvez分析模型[ | 对于复合材料装甲,当冲击速度增长量略大于弹道速度时,弹丸剩余速度显著增加,当冲击速度大于弹道极限时,装甲系统吸能性能急剧下降 |
Medvedovski[ | 2010 | 氧化铝陶瓷/ZrO2/SiC/Si3N4/SiAlON | 实验 | 除致密的均质先进陶瓷外,具有最佳结构组成的异质材料也具有显著的弹道性能 |
Liu等[ | 2015/ 2016 | Al2O3陶瓷/Ti6Al4V/ UHMWPE/碳纤维/铝合板等复合装甲材料 | 实验/ABAQUS Explicit模拟 | 最外层Ti6Al4V为UHMWPE层提供支撑,有助于吸收或耗散冲击物能量,提高中间层UHMWPE的缓冲性能及能量平衡作用 |
Binar等[ | 2018 | 透明防弹玻璃 | Johnson-Cook模型/LS-DYNA模拟 | PVB材料强度对温度有相当大的依赖性 |
Fras等[ | 2019 | 超高强度钢(Mars? 300) | 实验/LS-DYNA模拟 | ①在温度高达700℃的目标靶板内部,形成一个环形的局部塑性变形带; ②在双向拉伸作用下,裂纹从板的背面开始萌生,裂纹通过局部塑性变形带向靶板的受冲击前表面传播 |
作者 | 侵彻体 | 侵彻目标装甲结构 |
---|---|---|
朱锡等[ | 小口径火炮弹 | 均质钢;陶瓷-钢装甲;陶瓷-钢-纤维复合材料装甲 |
高速立方体破片 | 面板为玻璃纤维层,背板为芳纶正交铺设布层 | |
Jena等[ | 7.62穿甲弹 | 两种装甲复合材料(钢-钢/钢-纤维); 两种分层形式(直接接触/两层间隔20mm) |
Zhang等[ | 圆柱形钢弹 | T4、T12单层装甲;接触式多层(T2T2双层、T1T3双层、T3T1双层、T1T1T1T1四层、T4T4T4三层)装甲;间隙式多层[T2(100)T2双层、T2(6)T2双层]装甲① |
Deng等[ | 半球形、卵形及 圆柱形平头弹丸 | 接触式多层(T1T3双层、T2T2双层、T3T1双层、T1T1T1T1四层、T1T1T1T1T1T1六层)装甲; 间隙式多层[T2(6)T2双层、T2(100)T2双层]装甲① |
Liu等[ | 高速爆炸碎片 | 1cm+1cm+2cm、1cm+2cm+1cm、2cm+1cm+1cm复合装甲 |
Xiang等[ | 半径2.5mm、宽50mm的锤 | 完全夹紧的带有金属泡沫芯的夹层梁 |
Ren等[ | 超高速Al2024合金弹丸碎片群 | Al2024/烧结PTFE(聚四氟乙烯)-Al靶板、Al2024合金后墙 |
表2 侵彻实验中装甲结构对比
作者 | 侵彻体 | 侵彻目标装甲结构 |
---|---|---|
朱锡等[ | 小口径火炮弹 | 均质钢;陶瓷-钢装甲;陶瓷-钢-纤维复合材料装甲 |
高速立方体破片 | 面板为玻璃纤维层,背板为芳纶正交铺设布层 | |
Jena等[ | 7.62穿甲弹 | 两种装甲复合材料(钢-钢/钢-纤维); 两种分层形式(直接接触/两层间隔20mm) |
Zhang等[ | 圆柱形钢弹 | T4、T12单层装甲;接触式多层(T2T2双层、T1T3双层、T3T1双层、T1T1T1T1四层、T4T4T4三层)装甲;间隙式多层[T2(100)T2双层、T2(6)T2双层]装甲① |
Deng等[ | 半球形、卵形及 圆柱形平头弹丸 | 接触式多层(T1T3双层、T2T2双层、T3T1双层、T1T1T1T1四层、T1T1T1T1T1T1六层)装甲; 间隙式多层[T2(6)T2双层、T2(100)T2双层]装甲① |
Liu等[ | 高速爆炸碎片 | 1cm+1cm+2cm、1cm+2cm+1cm、2cm+1cm+1cm复合装甲 |
Xiang等[ | 半径2.5mm、宽50mm的锤 | 完全夹紧的带有金属泡沫芯的夹层梁 |
Ren等[ | 超高速Al2024合金弹丸碎片群 | Al2024/烧结PTFE(聚四氟乙烯)-Al靶板、Al2024合金后墙 |
文献 | 储罐保护层材料 | 材料特性 | 研究结果 |
---|---|---|---|
[ | PVC | 阻燃、耐腐蚀、柔韧性好、易成型、环保、保存时间长、制造工艺成熟、价格低廉 | PVC保护层对连锁破坏概率的降低程度超过了99% |
[ | ABS树脂 | 抗冲击性优良、韧性好、易成型、韧/硬/刚相均衡、稳定性高、环保、价格低廉 | ABS树脂保护层对连锁破坏概率的降低程度超过了90% |
[ | UHMWPE | 密度低、吸能性、抗冲击性和抗切割性优良、抗紫外线辐射、耐腐蚀,是高性能纤维中比强度最高的纤维,比模量仅次于碳纤维 | 3种UHMWPE保护层结构中,吸能作用从高到低依次为:单向构造、三层正交构造、平纹构造 |
表3 不同储罐保护层材料防爆炸碎片侵彻效果对比
文献 | 储罐保护层材料 | 材料特性 | 研究结果 |
---|---|---|---|
[ | PVC | 阻燃、耐腐蚀、柔韧性好、易成型、环保、保存时间长、制造工艺成熟、价格低廉 | PVC保护层对连锁破坏概率的降低程度超过了99% |
[ | ABS树脂 | 抗冲击性优良、韧性好、易成型、韧/硬/刚相均衡、稳定性高、环保、价格低廉 | ABS树脂保护层对连锁破坏概率的降低程度超过了90% |
[ | UHMWPE | 密度低、吸能性、抗冲击性和抗切割性优良、抗紫外线辐射、耐腐蚀,是高性能纤维中比强度最高的纤维,比模量仅次于碳纤维 | 3种UHMWPE保护层结构中,吸能作用从高到低依次为:单向构造、三层正交构造、平纹构造 |
1 | JIAMeisheng, CHENGuohua, RENIERSG. Equipment vulnerability assessment (EVA) and pre-control of domino effects using a five-level hierarchical framework (FLHF) [J]. Journal of Loss Prevention in the Process Industries, 2017, 48(7): 260-269. |
2 | 陈国华, 祁帅, 贾梅生, 等. 化工容器碎片引发多米诺效应事故研究历程与展望[J]. 化工进展, 2017, 36(11): 4308-4317. |
CHENGuohua, QIShuai, JIAMeisheng, et al. Research on Domino effect accident caused by the fragments of chemical vessels in retrospect and prospect [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4308-4317. | |
3 | CHENYinting, ZHANGMingguang, GUOPeijie, et al. Investigation and analysis of historical Domino effects statistic [J]. Procedia Engineering, 2012, 45(2): 152-158. |
4 | 祁帅. 爆炸碎片影响下的储罐动力学响应与易损性研究[D]. 广州: 华南理工大学, 2017. |
QIShuai. Research on dynamic response and the vulnerability of storage tanks influenced by blast fragments [D]. Guangzhou: South China University of Technology, 2017. | |
5 | LIXinrui, HIROSHIK, SAM M M. Case study: assessment on large scale LPG BLEVEs in the 2011 Tohoku earthquakes [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 257-266. |
6 | 中国新闻网. 江苏盐城响水爆炸事故已致78人遇难 56名遇难者确认身份[EB/OL].[2019-03-25]. https: //news. sina. com. cn/o/2019-03-25/doc-ihtxyzsm0352148. shtml. |
CHINANEWS. 78 People have been killed and 56 victims have been identified in an explosion in Xiangshui, Jiangsu province [EB/OL]. [2019-03-25]. https: //news. sina. com. cn/o/2019-03-25/doc-ihtxyzsm0352148. shtml. | |
7 | ZHANGXinmei, CHENGuohua. Modeling and algorithm of Domino effect in chemical industrial parks using discrete isolated island method [J]. Safety Science, 2011, 49 (3): 463-467. |
8 | ALILECHEN, COZZANIV, RENIERSG, et al. Thresholds for Domino effects and safety distances in the process industry: a review of approaches and regulations [J]. Reliability Engineering & System Safety, 2015, 143(8): 74-84. |
9 | JANSSENSJ, TALARICOL, RENIERSG, et al. A decision model to allocate protective safety barriers and mitigate Domino effects [J]. Reliability Engineering & System Safety, 2015, 143(s1): 44-52. |
10 | TUGNOLIA, GUBINELLIG, LANDUCCIG, et al. Assessment of fragment projection hazard: probability distributions for the initial direction of fragments [J]. Journal of Hazardous Materials, 2014, 279: 418-427. |
11 | SUNDongliang, JIANGJuncheng, ZHANGMingguang, et al. Investigation of multiple Domino scenarios caused by fragments [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 591-602. |
12 | 钱新明, 徐亚博, 刘振翼. 基于运动轨迹分析的储罐爆炸碎片拦截方法研究[J]. 北京理工大学学报, 2010, 30(9): 1020-1023. |
QIANXinming, XUYabo, LIUZhenyi. Study on method of heading off fragments from vessel explosion based on its trajectory analysis [J]. Transactions of Beijing Institute of Technology, 2010, 30(9): 1020-1023. | |
13 | 孙东亮, 蒋军成, 张明广, 等. 隔板与保护层对球罐爆炸碎片连锁破坏概率的影响[J]. 化工学报, 2011, 62(s1): 208-214. |
SUNDongliang, JIANGJuncheng, ZHANGMingguang, et al. Influence of clapboard and protective layer on Domino effect risk caused by fragments from spherical vessel explosion [J]. CIESC Journal, 2011, 62(s1): 208-214. | |
14 | 贾梅生. 过程设备火灾易损性理论与多米诺效应防控[D] . 广州: 华南理工大学, 2017. |
JIAMeisehng. Vulnerability theory for process equipment exposed to fire and pre-control of Domino effects [D]. Guangzhou: South China University of Technology, 2017. | |
15 | FORRESTALM J, FREWD J, HANCHAKS J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 1999, 67(4): 841. |
16 | CHARLESE, ANDERSONJ. Analytical models for penetration mechanics: a review [J]. International Journal of Impact Engineering, 2017, 108: 3-26. |
17 | ANDREWK, PRERNAJ, WIMBERLYD. Review, identification and analysis of local impact of projectile hazards in the LNG industry [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 304-319. |
18 | RENIERSG, COZZANIV. Domino effects in the process industries [M]. The Netherlands: Elsevier, Amsterdam, 2013: 384. |
19 | COZZANIV, SALZANOE. The quantitative assessment of Domino effects caused by overpressure [J]. Journal of Hazardous Materials, 2004, 107(3): 67-80. |
20 | NGUYENQ B, MEBARKIA, SAADAR A, et al. Integrated probabilistic framework for Domino effect and risk analysis [J]. Advances in Engineering Software, 2009, 40(9): 892-901. |
21 | ABDOLHAMIDZADEHB, ABBASIT, RASHTCHIAND, et al. Domino effect in process-industry accidents — An inventory of past events and identification of some patterns [J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5): 575-593. |
22 | KHANF I, ABBASIS A. Studies on the probabilities and likely impacts of chains of accident (Domino effect) in a fertilizer industry [J]. Process Safety Progress, 2000, 19(1): 40-56. |
23 | SALZANOE, BASCOA. Simplified model for the evaluation of the effects of explosions on industrial target [J]. Journal of Loss Prevention in the Process Industries, 2015, 37: 119-123. |
24 | 陈国华. 风险工程学[M]. 北京: 国防工业出版社, 2007: 280. |
CHENGuohua. Risk engineering [M]. Beijing: National Defense Industry Press, 2007: 280. | |
25 | HUDean, ZHANGYoumin, SHENZhiwei, et al. Investigation on the ballistic behavior of mosaic SiC/UHMWPE composite armor systems [J]. Ceramics International, 2017, 43(13): 10368-10376. |
26 | 朱锡, 侯海量, 谷美邦, 等. 抵御小口径火炮弹道侵彻装甲防护模拟实验研究[J]. 爆炸与冲击, 2006(3): 262-268. |
ZHUXi, HOUHailiang, GUMeibang, et al. Experimental study on armor protection against ballistic impact of small caliber artillery [J]. Explosion and Shock Wave, 2006(3): 262-268. | |
27 | ANDREWJ, SRINIVASANS M, AROKIARAJAN, et al. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials — A critical review [J]. Composite Structures, 2019, 224: 111007. |
28 | SINGHH, MAHAJANP. Analytical modelling of low velocity large mass impact on composite plate including damage evolution [J]. Composite Structure, 2016, 149: 79-92. |
29 | 张建斌. 基于ANSYS/LS-DYNA的弹头侵彻问题分析与研究[D]. 西安: 西安电子科技大学, 2009. |
ZHANGJianbin. Analysis and study of warhead penetration based on ANSYS/LS-DYNA [D]. Xi’an: Xidian University, 2009. | |
30 | 曹凌宇, 罗兴柏, 刘国庆, 等. 军用装甲防护技术发展及应用[J]. 包装工程, 2018, 39(3): 223-228. |
CAOLingyu, LUOXingbai, LIUGuoqing, et al. Development and application of military armor protection technology [J]. Packaging Engineering, 2018, 39(3): 223-228. | |
31 | CALDERC A, GOLDSMITHW. Plastic deformation and perforation of thin plates resulting from projectile impact [J]. International Journal of Solids & Structures, 1971, 7(7): 863-868. |
32 | BØRVIKT, LANGSETHM, HOPPERSTADO S, et al. Ballistic penetration of steel plates [J]. International Journal of Impact Engineering, 1999, 22(9/10): 855-886. |
33 | TENGX, WIERZBICKIT. Transition of failure modes in round-nosed mass-to-beam impact [J]. European Journal of Mechanics, 2005, 24(5): 857-876. |
34 | IQBALM A, GUPTAP K, DEOREV S, et al. Effect of target span and configuration on the ballistic limit [J]. International Journal of Impact Engineering, 2012, 42: 11-24. |
35 | DENNISB R, JEFFREYW S, BERNTB J, et al. Effect of composite covering on ballistic fracture damage development in ceramic plates [J]. International Journal of Impact Engineering, 2017, 99: 58-68. |
36 | WILKINSM L, CLINEC F, HONODELC A. Fifth progress report of light armor program [R]. Laboratory, Lawrence Radiation, 1969. |
37 | SHIMV P W, LIM C T, FOO K J. Dynamic mechanical properties of fabric armour [J]. International Journal of Impact Engineering, 2001, 25(1): 1-15. |
38 | 朱锡, 梅志远, 徐顺棋, 等. 高速破片侵彻舰用复合装甲模拟实验研究[J]. 兵工学报, 2003, 24(4): 530-533. |
ZHUXi, MEIZhiyuan, XUShunqi, et al. Experimental research on the penetration of high-velocity fragments in composite warship armor [J]. Acta Armamentarii, 2003, 24(4): 530-533. | |
39 | SHOKRIEHM M, JAVADPOURG H. Penetration analysis of a projectile in ceramic composite armor [J]. Composite Structures, 2008, 82(2): 269-276. |
40 | CHOCRON BENLOULOI S, SÁNCHEZ-GÁLVEZV. A new analytical model to simulate impact onto ceramic/composite armors [J]. International journal of impact engineering, 1998, 21(6): 461-471. |
41 | MEDVEDOVSKIE. Ballistic performance of armour ceramics: Influence of design and structure. Part 1 [J]. Ceramics International, 2010, 36(7): 2103-2115. |
42 | MEDVEDOVSKIE. Ballistic performance of armour ceramics: influence of design and structure. Part 2 [J]. Ceramics International, 2010, 36(7): 2117-2127. |
43 | LIUWeilan, CHENZhaohai, CHENZhaofeng, et al. Influence of different back laminate layers on ballistic performance of ceramic composite armor [J]. Materials & Design, 2015, 87: 421-427. |
44 | LIUWeilan, CHENZhaofeng, CHENGXingwang, et al. Design and ballistic penetration of the ceramic composite armor [J]. Composites Part B: Engineering, 2016, 84: 33-40. |
45 | BINART, ŠVARCJ, VYROUBALP, et al. The comparison of numerical simulation of projectile interaction with transparent armour glass for buildings and vehicles [J]. Engineering Failure Analysis, 2018, 92: 121-139. |
46 | FRAST, ROTHC C, MOHRD. Dynamic perforation of ultra-hard high-strength armor steel: impact experiments and modeling [J]. International Journal of Impact Engineering, 2019, 131: 256-271. |
47 | 吴乔国. 不同材料靶板的抗弹性能研究[D]. 合肥: 中国科学技术大学, 2012. |
WUQiaoguo. A study on the penetration resistance of targets made of various materials [D]. Hefei: University of Science and Technology of China, 2012. | |
48 | BIRKHOFFG, MACDOUGALLD P, PUGHE M, et al. Explosives with lined cavities [J]. Journal of Applied Physics, 1948, 19(6): 563-582. |
49 | RECHTR F, IPSONT W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384. |
50 | TATEA. A theory for the deceleration of long rods after impact [J]. Journal of the Mechanics & Physics of Solids, 1967, 15(6): 387-399. |
51 | ALEKSEEVSKIIV P. Penetration of a rod into a target at high velocity [J]. Combustion Explosion & Shock Waves, 1966, 2(2): 63-66. |
52 | WARRENT L. The effect of target inertia on the penetration of aluminum targets by rigid ogive-nosed long rods [J]. International Journal of Impact Engineering, 2016, 91: 6-13. |
53 | RUBINM B, KOSITSKIR, ROSENBERGZ. Essential physics of target inertia in penetration problems missed by cavity expansion models [J]. International Journal of Impact Engineering, 2016, 98: 97-104. |
54 | RAVIDM, BODNERS R. Dynamic perforation of viscoplastic plates by rigid projectiles [J]. International Journal of Engineering Science, 1983, 21(6): 577-591. |
55 | WALKERJ D, CHARLESJR E A. A time-dependent model for long-rod penetration [J]. International Journal of Impact Engineering, 2015, 16(1): 19-48. |
56 | BEN-DORG, DUBINSKYA, ELPERINT. About effect of layering on ballistic properties of metal shields against sharp-nosed rigid projectiles [J]. Engineering Fracture Mechanics, 2013, 102: 358-361. |
57 | ROSENBERGZ, DEKELE. Terminal ballistics [M]. London /New York: Springer Heidelberg Dordrecht, 2012. |
58 | MASRIR. The effect of adiabatic thermal softening on specific cavitation energy and ductile plate perforation [J]. International Journal of Impact Engineering, 2014, 68: 15-27. |
59 | MASRIR. Ballistically equivalent aluminium targets and the effect of hole slenderness ratio on ductile plate perforation [J]. International Journal of Impact Engineering, 2015, 80: 45-55. |
60 | LIAGHATG H, NAEINIH M, FELLIS. The mechanics of normal and oblique penetration of conical projectiles into multilayer metallic targets [J]. Iranian Journal of Science and Technology Transaction B : Engineering, 2005, 29(B2): 241-251. |
61 | JENAP K, RAMANJENEYULUK, SIVA KUMARK, et al. Ballistic studies on layered structures [J]. Materials & Design, 2009, 30(6): 1922-1929. |
62 | 邓云飞. 弹靶结构及其材料性能对金属靶抗侵彻特性影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
DENGYunfei. Research on the effect of configuration and material characteristic of projectile and target on the ballistic behavior of metal targets [D]. Harbin: Harbin Institute of Technology, 2012. | |
63 | DENGYunfei, ZHANGWei, CAOZongsheng. Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against hemispherical-nosed projectiles impact [J]. Materials & Design, 2012, 41: 266-281. |
64 | DENGYunfei, ZHANGWei, CAOZongsheng. Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against ogival-nosed rigid projectiles impact [J]. Materials & Design, 2013, 44: 228-239. |
65 | DENGYunfei, ZHANGWei, GuanghuiQING, et al. The ballistic performance of metal plates subjected to impact by blunt-nosed projectiles of different strength [J]. Materials and Design, 2014, 54(2): 1056-1067. |
66 | DENGYunfei, ZHANGWei, YANGYongguang, et al. Experimental investigation on the ballistic performance of double-layered plates subjected to impact by projectile of high strength [J]. International Journal of Impact Engineering, 2014, 70(8): 38-49. |
67 | 邓云飞, 张伟, 贾斌, 等. 靶体材料叠层顺序对抗卵形头弹冲击性能影响[J]. 哈尔滨工业大学学报, 2017, 49(10): 132-137. |
DENGYunfei, ZHANGWei, JIABin, et al. The effect of material layering order on the ballistic performances of targets against the impact of ogival-nosed projectiles [J]. Journal of Harbin Institute of Technology, 2017, 49(10): 132-137. | |
68 | LIUJianfeng, LONGYuan, JIChong, et al. Ballistic performance study on the composite structures of multi-layered targets subjected to high velocity impact by copper EFP [J]. Composite Structures, 2018, 184: 484-496. |
69 | ZHANGWei, DENGYunfei, CAOZongsheng, et al. Experimental investigation on the ballistic performance of monolithic and layered metal plates subjected to impact by blunt rigid projectiles [J]. International Journal of Impact Engineering, 2012, 49(2): 115-129. |
70 | XIANGChunping, QINQinghua, WANGMingshi, et al. Low-velocity impact response of sandwich beams with a metal foam core: experimental and theoretical investigations [J]. International Journal of Impact Engineering, 2019, 130: 172-183. |
71 | RENSiyuan, ZHANGQingming, WUQiang, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. International Journal of Impact Engineering, 2019, 130: 124-137. |
72 | YOSSIFONG, YARINA L, RUBINM B. Penetration of a rigid projectile into a multi-layered target: theory and numerical computations [J]. International Journal of Engineering Science, 2002, 40(12): 1381-1401. |
73 | BABAEIB, SHOKRIEHM M, DANESHJOUK. The ballistic resistance of multi-layered targets impacted by rigid projectiles [J]. Materials Science and Engineering: A, 2011, 530: 208-217. |
74 | JANKOWIAKT, RUSINEKA, WOODP. A numerical analysis of the dynamic behaviour of sheet steel perforated by a conical projectile under ballistic conditions [J]. Finite Elements in Analysis and Design, 2013, 65: 39-49. |
75 | SENTHILK, IQBALM A. Effect of projectile diameter on ballistic resistance and failure mechanism of single and layered aluminum plates [J]. Theoretical and Applied Fracture Mechanics, 2013, 67/68: 53-64. |
76 | LIANGC C, YANGM F, WUP W, et al. Resistant performance of perforation of multi-layered targets using an estimation procedure with marine application [J]. Ocean Engineering, 2005, 32(3/4): 441-468. |
77 | WANGJinxiang, ZHOUNan. Damage mechanism and anti-penetration performance of explosively welded plates impacted by projectiles with different shapes [J]. Materials & Design, 2013, 49: 966-973. |
78 | SUNDongliang, JIANGJuncheng, ZHANGMingguang, et al. Investigation on the approach of intercepting fragments generated by vessel explosion using barrier net [J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 989-996. |
79 | SUNDongliang, HUANGGuangtuan, JIANGJuncheng, et al. Influence of the protective layer of polyvinylchloride resin on failure of LPG vessel caused by heat radiation [J]. Procedia Engineering, 2013, 62: 564-572. |
80 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 保护层分析(LOPA)应用指南: GB/T 32857—2016 [S]. 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Application guide for layer of protection analysis (LOPA): GB/T 32857—2016 [S]. 2016. | |
81 | 贾梅生, 陈国华, 胡昆. 化工园区多米诺事故风险评价与防控技术综述[J]. 化工进展, 2017, 36(4): 1534-1543. |
JIAMeisheng, CHENGuohua, HUKun. Review of risk assessment and pre-control of Domino effect in chemical industry park [J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1534-1543. | |
82 | 孙东亮, 蒋军成, 张明广, 等. 聚氯乙烯树脂层对球罐爆炸碎片连锁破坏概率的影响[J]. 南京工业大学学报(自然科学版), 2011, 33(6): 57-61. |
SUNDongliang, JIANGJuncheng, ZHANGMingguang, et al. Influence of protective layer of polyvinylchloride resin on Domino effect risk caused by fragments from spherical vessel explosion [J]. Journal of Nanjing University of Technology (Natural Science Edition), 2011, 33(6): 57-61. | |
83 | 孙东亮, 黄光团, 蒋军成, 等. ABS树脂层对球罐爆炸碎片连锁破坏概率的影响[C]// 2012(沈阳)国际安全科学与技术学术研讨会, 2012. |
SUNDongliang, HUANGGuangtuan, JIANGJuncheng, et al. Influence of protective layer of ABS resin on Domino effect risk caused by fragments from spherical vessel explosion [C]// Proceedings of 2012(Shenyang) International Colloquium on Safety Science and Technology, 2012. | |
84 | SUNDongliang, JIANGJuncheng, ZHANGMingguang, et al. Ballistic experiments on the mechanism of protective layer against Domino effect caused by projectiles [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 17-28. |
85 | 陈国华, 祁帅, 胡昆. 化工园区目标储罐受撞击荷载的易损性分析[J]. 化工进展, 2018, 37(3): 1194-1200. |
CHENGuohua, QIShuai, HUKun. Vulnerability analysis of target tank in chemical industry park under impact load [J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1194-1200. |
[1] | 陈国华, 杨棚, 赵一新, 李小峰, 赵远飞. 温度载荷与爆炸碎片冲击载荷耦合作用下储罐易损性分析[J]. 化工进展, 2021, 40(2): 1130-1136. |
[2] | 陈国华, 赵一新, 周利兴, 杨棚, 曾涛, 赵远飞. 爆炸碎片撞击下受保护层防护的储罐易损性规律分析[J]. 化工进展, 2020, 39(11): 4749-4756. |
[3] | 陈国华, 祁帅, 贾梅生, 胡昆. 化工容器碎片引发多米诺效应事故研究历程与展望[J]. 化工进展, 2017, 36(11): 4308-4317. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |