52 |
KWON T W , YOU K J , LEE I, et al . Systematic molecular-level design of binders incorporating meldrum’s acid for silicon anodes in lithium rechargeable batteries[J]. Advanced Materials, 2014, 26(47): 7979-7985.
|
53 |
WEI H , XIA Z , XIA D . One step synthesis of uniform SnO2 electrode by UV curing technology toward enhanced lithium-ion storage[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7169-7176.
|
54 |
SONG J , YU Z , GORDIN M L , et al . Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder[J]. ACS Nano, 2015, 9(12): 11933-11941.
|
55 |
GAO H , ZHOU W , JANG J , et al . Cross-linked chitosan as a polymer network binder for an antimony anode in sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(6): 1502130.
|
1 |
NISHI Y . Lithium ion secondary batteries; past 10 years and the future[J]. Journal of Power Sources, 2001, 100(1/2): 101-106.
|
2 |
张英杰, 朱子翼, 董鹏, 等 . LiFePO4电化学反应机理、制备及改性研究新进展[J]. 物理化学学报, 2017, 33(6): 1085-1107.
|
|
ZHANG Y J , ZHU Z Y , DONG P , et al . New research progress of the electrochemical reaction mechanism,preparation and modification for LiFePO4 [J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1085-1107.
|
3 |
HWANG J Y , MYUNG S T , YOON C S , et al . Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na[Ni0.61Co0.12Mn0.27]O2 assembled in spherical secondary particles[J]. Advanced Functional Materials, 2016, 26(44): 8083-8093.
|
4 |
ZHU Z , LIANG F , ZHOU Z , et al . Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6: 1513-1522.
|
5 |
张英杰, 朱子翼, 董鹏, 等 . 钠离子电池碳基负极材料的研究进展[J]. 化工进展, 2017, 36(11): 4106-4115.
|
|
ZHANG Y J , ZHU Z Y , DONG P , et al . Research progress of carbon-based anode materials for sodium ion batteries[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4106-4115.
|
6 |
PONROUCH A , MARCHANTE E , COURTY M , et al . In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science, 2012, 5(9): 8572-8583.
|
7 |
VIGNAROOBAN K , KUSHAGRA R , ELANGO A , et al . Current trends and future challenges of electrolytes for sodium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2829-2846.
|
8 |
HWANG J Y , MYUNG S T , SUN Y K . Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
|
9 |
BOMMIER C , JI X . Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes[J]. Small, 2018, 14(16): 1703576.
|
10 |
SHI Y , ZHOU X , YU G . Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries[J]. Accounts of Chemical Research, 2017, 50(11): 2642-2652.
|
11 |
曾涛 . 聚丙烯酸粘结剂在锂离子电池正极中的应用研究[D]. 长沙:中南大学, 2013.
|
|
ZENG T . Study on polyacrylic acid as binder of cathode in lithium ion battery[D]. Changsha: Central South University, 2013.
|
12 |
LIU G , XUN S , VUKMIROVIC N , et al . Polymers with tailored electronic structure for high capacity lithium battery electrodes[J]. Advanced Materials, 2011, 23(40): 4679-4683.
|
13 |
王晕 . PVDF粘结剂在锂离子电池中的应用研究[D]. 上海:复旦大学, 2013.
|
|
WANG Y . The application of PVDF binder in lithium-ion battery[D]. Shanghai: Fudan University, 2013.
|
14 |
ZHANG L , LIU Z , CUI G , et al . Biomass-derived materials for electrochemical energy storages[J]. Progress in Polymer Science, 2015, 43(1): 136-164.
|
15 |
柴丽莉, 张力, 曲群婷, 等 . 锂离子电池电极粘结剂的研究进展[J]. 化学通报, 2013, 76(4): 299-306.
|
|
CHAI L L , ZHANG L , QU Q T , et al . Progress of electrode binder in lithium ion batteries[J]. Chemistry Bulletin, 2013, 76(4): 299-306.
|
16 |
武兆辉, 杨娟玉, 闫坤, 等 . 锂离子电池硅基负极用聚合物粘结剂的研究进展[J]. 稀有金属, 2016, 40(8): 838-849.
|
|
WU Z H , YANG J Y , YAN K , et al . Advances in polymeric binder for silicon based anode of lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2016, 40(8): 838-849.
|
17 |
HONG K , LONG Q , ZENG R , et al . Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 12733-12738.
|
18 |
LIU H , JIA M , CAO B , et al . Nitrogen-doped carbon/graphene hybrid anode material for sodium-ion batteries with excellent rate capability[J]. Journal of Power Sources, 2016, 319: 195-201.
|
56 |
WEI Y , WANG Z , YE H , et al . A stable cross-linked binder network for SnO2 anode with enhanced sodium-ion storage performance[J]. Chemistry Select, 2017, 2(35): 11365-11369.
|
19 |
熊鹏 . 高粘度羧甲基纤维素钠合成工艺及其在硅负极中应用研究[D]. 武汉:湖北工业大学, 2017.
|
|
XIONG P . Preparation of high viscosity sodium carboxymethyl cellulose and its application on silicon cathode[D]. Wuhan: Hubei University of Technology, 2017.
|
20 |
刘欣, 赵海雷, 解晶莹, 等 . 锂离子电池高比容量负极用粘结剂[J]. 化学进展, 2013, 25(8): 1401-1410.
|
|
LIU X , ZHAO H L , XIE J Y , et al . Polymer binders for high capacity electrode of lithium-ion battery[J]. Progress in Chemistry, 2013, 25(8): 1401-1410.
|
21 |
HOCHGATTERER N S , SCHWEIGER M R , KOLLER S , et al . Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability[J]. Electrochemical and Solid-State Letters, 2008, 11: A76-A80.
|
22 |
MAZOUZI D , LESTRIEZ B , ROUE L , et al . Silicon composite electrode with high capacity and long cycle life[J]. Electrochemical and Solid-State Letters, 2009 12(11): A215-218.
|
23 |
BRIDEL J S , AZAIS T , MORCRETTE M , et al . Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries[J]. Chemistry of Materials, 2010, 22(3): 1229-1241.
|
24 |
MUNAO D , ERVEN J W M V , VALVO M , et al . Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6695-6702.
|
25 |
PANG Y , ZHANG S , LIU L , et al . Few-layer MoS2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anode with high rate performance[J]. Journal of Materials Chemistry A, 2017, 5(34): 17963-17972.
|
26 |
QIAN J , CHEN Y , WU L , et al . High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries[J]. Chemical Communications, 2012, 48(56): 7070-7072.
|
27 |
ZHAO J , YANG X , YAO Y , et al . Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery[J]. Advanced Science, 2018, 5(4): 1700768.
|
28 |
DAHBI M , NAKANO T , YABUUCHI N , et al . Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries[J]. Electrochemistry Communications, 2014, 44(7): 66-69.
|
29 |
ZHANG W , DAHBI M , KOMABA S . Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries[J]. Current Opinion in Chemical Engineering, 2016, 13: 36-44.
|
30 |
FAN M , YU H , CHEN Y . High-capacity sodium ion battery anodes based on CuO nanosheets and carboxymethyl cellulose binder[J]. Materials Technology, 2017, 32 (10): 598-605.
|
31 |
KOVALENKO I , ZDYRKO B , MAGASINSKI A , et al . A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 334(6052): 75-79.
|
32 |
岳丽萍, 韩鹏献, 姚建华, 等 . 锂离子电池硅基负极粘结剂研究进展[J]. 电池工业, 2017, 21(1): 31-44.
|
|
YUE L P , HAN P X , YAO J H , et al . Advances of binder for silicone-based anode in lithium ion batteries[J]. Chinese Battery Industry, 2017, 21(1): 31-44.
|
33 |
LI Y , HU Y , TITIRICI M , et al . Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(18): 1600659.
|
34 |
FENG J , WANG L , LI D , et al . Enhanced electrochemical stability of carbon-coated antimony nanoparticles with sodium alginate binder for sodium-ion batteries[J]. Progress in Natural Science Materials International, 2018, 28(2): 205-211.
|
35 |
MITRA S , VELURI P S , CHAKRABORTHY A , et al . Electrochemical properties of spinel cobalt ferrite nanoparticles with sodium alginate as interactive binder[J]. ChemElectroChem, 2014, 1(6): 1068-1074.
|
36 |
LING L , BAI Y , WANG Z , et al . Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5560-5568.
|
37 |
KOMABA S , SHIMOMURA K , YABUUCHI N , et al . Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries[J]. Journal of Physical Chemistry C, 2011, 115(27): 13487-13495.
|
38 |
WU H , CHAN G , CHOI J W , et al . Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology, 2012, 7(5): 310-315.
|
39 |
ZHAO F , XU P , GE H , et al . Na-Doped Li4Ti5O12 as an anode material for sodium-ion battery with superior rate and cycling performance[J]. Journal of the Electrochemical Society, 2016, 163(5): A690-695.
|
40 |
FAN X , MAO J , ZHU Y , et al . Superior stable self-healing SnP3 anode for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(18): 2314-2316.
|
41 |
NGUYEN C C , YOON T , SEO D M, et al . Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12211-12220.
|
42 |
LUO C , FAN X , MA Z , et al . Self-healing chemistry between organic material and binder for stable sodium-ion batteries[J]. Chem, 2017, 3(6): 1050-1062.
|
43 |
MAGASINSKI A , ZDYRKO B , KOVALENKO I , et al . Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3004-3010.
|
44 |
MAZOUZI D , KARKAR Z , HEMANDEZ C R , et al . Critical roles of binders and formulation at multiscales of silicon-based composite electrodes[J]. Journal of Power Sources, 2015, 280: 533-549.
|
45 |
CAI Z P , LIANG Y , LI W S , et al . Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder[J]. Journal of Power Sources, 2009, 189(1): 547-551.
|
46 |
MING J , MING H , KWAK W J , et al . The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance[J]. Chemical Communications, 2014, 50(87): 13307-13310.
|
47 |
YUI Y, HAYASHI M , HAYASHI K , et al . Electrochemical properties of Sn-Co electrode with various kinds of binder materials for sodium ion batteries[J]. Solid State Ionics, 2016, 288: 219-223.
|
48 |
LI W J , CHOU S L , WANG J Z , et al . A new, cheap, and productive FeP anode material for sodium-ion batteries[J]. Chemical Communications, 2015, 46(19): 3682-3685.
|
49 |
KIM Y , KIM Y , CHOI A , et al . Tin phosphide as a promising anode material for Na-ion batteries[J]. Advanced Materials, 2014,26(24): 4139-4144.
|
50 |
LIM S, LEE K, SHIN I , et al . Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes[J]. Journal of Power Sources, 2017, 360: 585-592.
|
51 |
KOO B, KIM H , CHO Y, et al . A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie: International Edition, 2012, 124(35): 8892-8897.
|