1 |
孙卓 . 含荧光颗粒液滴的内部流动特性及最终沉积图案[D]. 北京: 华北电力大学, 2016.
|
|
SUN Z . The internal flow characteristics of droplets containing fluorescent nanoparticles and eventual deposition patterns[D]. Beijing: North China Electric Power University, 2016.
|
2 |
罗昊 . 基于微纳米结构表面的浸润性及液滴蒸发行为的研究[D]. 西安: 西北大学, 2016.
|
|
LUO H . Wetting and evaporation dynamics on micro/nano structured surfaces[D]. Xi’an: Northwest University, 2016.
|
3 |
ZHONG X , CRIVOI A , DUAN F . Sessile nanofluid droplet drying[J]. Adv. Colloid Interface Sci., 2015, 217(3): 13-30.
|
4 |
ZHANG Y , QIAN Y , LIU Z , et al . Surface wrinkling and cracking dynamics in the drying of colloidal droplets[J]. Eur. Phys. J. E: Soft Matter, 2014, 37(9): 1-7.
|
5 |
DEEGAN R D , BAKAJIN O , DUPONT T F . Capillary flow as the cause of ring stains from dried liquids[J]. Nature, 1997, 389(6653): 827-829.
|
6 |
MAMPALLIL D , ERAL H B . A review on suppression and utilization of the coffee-ring effect[J]. Adv. Colloid Interface Sci., 2018, 252: 38-54.
|
7 |
CONN J J , DUFFY B R , PRITCHAR D , et al . Fluid-dynamical model for antisurfactants[J]. Physical Review E, 2016, 93(4): 043121.
|
8 |
ZUO W , RAO Z J , WU G X , et al . Influence of surfactants on deposition coverage areas and evaporation time of pesticide droplets on cabbage leaves[J]. Journal of Southwest University, 2011, 33(9): 1-5.
|
9 |
MOON Y J , KANG H , SANG H L , et al . Effect of contact angle and drop spacing on the bulging frequency of inkjet-printed silver lines on FC-coated glass[J]. Journal of Mechanical Science & Technology, 2014, 28(4): 1441-1448.
|
10 |
ASKOUNIS A , TAKATA Y , SEFIANE K , et al . "Biodrop" evaporation and ring-stain deposits: the significance of DNA length[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(17):4361-4369.
|
11 |
SHABALIN V N , SHATOKHINA S N , DUTOV V V , et al . Method of diagnosing complicated urolithiasis and prognosticating urolithiasis: EP0504409[P]. 1996.
|
12 |
CHOI S U S . Enhancing thermal conductivity of fluids with nano-particles[J]. Asme. Fed., 1995, 231(1): 99-105.
|
13 |
WASAN D T , NIKOLOV A D . Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936): 156-9.
|
14 |
ASKOUNIS A , OREJON D , KOUTSOS V , et al . Nanoparticle deposits near the contact line of pinned volatile droplets: size and shape revealed by atomic force microscopy[J]. Soft Matter, 2011, 7(9): 4152-4155.
|
15 |
LIM S, ZHANG H , WU P , et al . The dynamic spreading of nanofluids on solid surfaces—Role of the nanofilm structural disjoining pressure[J]. J. Colloid Interface Sci., 2016, 470(9): 22-30.
|
16 |
TAYLOR J R . 误差分析导论[M]. 王中宇, 译. 2版. 北京:高等教育出版社, 2015: 308.
|
|
TAYLOR J R . An introduction to error analysis[M]. WANG Z Y, trans. 2nd ed. Beijing: Higher Education Press, 2015: 308.
|
17 |
马晓燕 . 纳米流体液滴蒸发过程及颗粒沉积图案的研究[D]. 天津: 天津商业大学, 2016.
|
|
MA X Y . Evaporating process of nanofluid sessile droplet and deposition patterns of nanoparticles[D]. Tianjin: Tianjin University of Commerce, 2016.
|
18 |
李芹芹 . 纳米流体液滴蒸发过程温度分布及沉积图案研究[D]. 天津: 天津商业大学, 2018.
|
|
LI Q Q . Study on temperature distribution and deposition pattern of nanofluid droplet evaporation process[D]. Tianjin: Tianjin University of Commerce, 2018.
|
19 |
梁功有, 曾忠, 张永祥, 等 . 两球形颗粒间横向毛细力的格子Boltzmann研究[J]. 应用数学和力学, 2013, 34(5): 445-453.
|
|
LIANG G Y , ZENG Z , ZHANG Y X , et al . Lateral capillary forces between two spherical particles: a lattice Boltzmann study[J]. Applied Mathematics and Mechanics, 2013, 34(5): 445-453.
|
20 |
ZHU D S , WU S Y , WANG N . Surface tension and viscosity of aluminum oxide nanofluids[C]// American Institute of Physics Conference Series., American Institute of Physics, 2010: 460-464.
|
21 |
蔡碧昊 . 底板热属性对纳米流体液滴蒸发的影响[D]. 天津: 天津商业大学, 2014.
|
|
CAI B H . Influence of thermal properties of substrate on the evaporation of nanofluid sessile droplets[D]. Tianjin: Tianjin University of Commerce, 2014.
|
22 |
XU X , LUO J . Marangoni flow in an evaporating water droplet[J]. Applied Physics Letters, 2007, 91(12): 3972.
|
23 |
DEEGAN R D , BAKAJIN O , DUPONT T F , et al . Contact line deposits in an evaporating drop[J]. Phys. Rev. E, 2000, 62(1 Pt B): 756-765.
|
24 |
SCHAFFER E , WONG P Z . Contact line dynamics near the pinning threshold: a capillary rise and fall experiment[J]. Physical Review E: Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 2000, 61(5A): 5257.
|
25 |
BRUTIN D . Droplet Wetting and Evaporation[M]. France: Elsevier, 2015, 464.
|
26 |
PARSA M , HARMAND S , SEFIANE K , et al . Effect of substrate temperature on pattern formation of nanoparticles from volatile drops[J]. Langmuir, 2015, 31(11): 3354-67.
|
27 |
STILL T , YUNKER P J , YODH A G . Surfactant-induced marangoni eddies alter the coffee-rings of evaporating colloidal drops.[J]. Langmuir, 2012, 28(11): 4984-4988.
|
28 |
WEON B M , JE J H . Capillary force repels coffee-ring effect[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2010, 82(1 Pt 2): 015305.
|
29 |
BUFFONE C , SEFIANE K . Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores[J]. International Journal of Multiphase Flow, 2004, 30(9): 1071-1091.
|