26 |
JAIKUMAR A , GUPTA A , KANDLIKAR S G , et al . Scale effects of graphene and graphene oxide coatings on pool boiling enhancement mechanisms[J]. International Journal of Heat and Mass Transfer, 2017, 109: 357-366.
|
27 |
ZUBER N . Hydrodynamic aspects of boiling heat transfer[D].Los Angeles: University of California, 1959.
|
28 |
ROHSENOW W . A method of correlating heat-transfer data for surface boiling of liquids[M]. Cambridge : M.I.T. Division of Industrial Cooporation, 1951, 74.
|
29 |
KIM T , KIM J M , KIM J H , et al . Orientation effects on bubble dynamics and nucleate pool boiling heat transfer of graphene-modified surface[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1393-1405.
|
30 |
KIM K M , BANG I C . Effects of graphene oxide nanofluids on heat pipe performance and capillary limits[J]. International Journal of Thermal Sciences, 2016, 100: 346-356.
|
31 |
KIM J H , KIM J M , JERNG D W , et al . Effect of aluminum oxide and reduced graphene oxide mixtures on critical heat flux enhancement[J]. International Journal of Heat and Mass Transfer, 2018, 116: 858-870.
|
32 |
张伟, 牛志愿, 李亚, 等 . 石墨烯/镍复合微结构表面的池沸腾传热特性[J]. 化工进展, 2018, 37(10): 3759-3764.
|
|
ZHANG W , NIU Z Y , LI Y ,et al . Pool boiling heat transfer characteristics on graphene/nickel composite microstructures[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3759-3764.
|
33 |
THEOFANOUS T G , DINH T N , TU J P , et al . The boiling crisis phenomenon - part II: Dryout dynamics and burnout[J]. Experimental Thermal and Fluid Science, 2002, 26(6/7): 793-810.
|
34 |
KIM S J , BANG I C , BUONGIORNO J , et al . Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids[J]. Applied Physics Letters, 2006, 89(15): 153107.
|
35 |
SADASIVAN P , CHAPPIDI P R , UNAL C , et al . Possible mechanisms of macrolayer formation[J]. International Communications in Heat and Mass Transfer, 1992, 19(6): 801-815.
|
36 |
WANG C H , DHIR V K . Effect of surface wettability on active nucleation density during pool boiling of water on a vertical surface[J]. Journal of Heat Transfer-Transactions of the Asme, 1993, 115(3): 659-669.
|
1 |
GOLOBIC I , PETKOVSEK J , KENNING D B R . Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed ir thermography[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 1385-1402.
|
2 |
MCHALE J P , GARIMELLA S V . Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces[J]. International Journal of Multiphase Flow, 2010, 36(4): 249-260.
|
37 |
AHN H S, KIM J M , KIM T , et al . Enhanced heat transfer is dependent on thickness of graphene films: the heat dissipation during boiling[J]. Sci. Rep., 2014, 4: 6276.
|
38 |
ARIK M , BAR-COHEN A . Effusivity-based correlation of surface property effects in pool boiling CHF of dielectric liquids[J]. International Journal of Heat and Mass Transfer, 2003, 46(20): 3755-3764.
|
39 |
ANDRIKOPOULOS K S , BOUNOS G , TASIS D , et al . The effect of thermal reduction on the water vapor permeation in graphene oxide membranes[J]. Advanced Materials Interfaces, 2014, 1(8): 082402-082410.
|
40 |
KIM J M , KIM J H , KIM M H , et al . Nanocapillarity in graphene oxide laminate and its effect on critical heat flux[J]. Journal of Heat Transfer-Transactions of the ASME, 2017, 139(8): 082402-082410.
|
3 |
MICHAIE S , RULLIèRE R , BONJOUR J . Experimental study of bubble dynamics of isolated bubbles in water pool boiling at subatmospheric pressures[J]. Experimental Thermal and Fluid Science, 2017, 87: 117-128.
|
4 |
MINSEOK H , GRAHAM S . Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification[J]. Applied Physics Letters, 2017, 111(9): 091601.
|
5 |
KAMATCHI R . Experimental investigations on nucleate boiling heat transfer of aqua-based reduced graphene oxide nanofluids[J]. Heat and Mass Transfer, 2017, 54(2): 437-451.
|
6 |
FORSTER H K , ZUBER N . Dynamics of vapor bubbles and boiling heat transfer[J]. AIChE Journal, 1955, 1(4): 531-535.
|
7 |
KANDLIKAR S G . A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation[J]. Journal of Heat Transfer-Transactions of the Asme, 2001, 123(6): 1071-1079.
|
8 |
ZHAO Y H , MASUOKA T , TSURUTA T . Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3189-3197.
|
9 |
ZHANG Y , ZHOU J , ZHOU W , et al . CHF correlation of boiling in FC-72 with micro-pin-fins for electronics cooling[J]. Applied Thermal Engineering, 2018, 138: 494-500.
|
10 |
CAO Z , LIU B , PREGER C , et al . Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1019-1033.
|
11 |
AHN H S, LEE C, KIM H , et al . Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface[J]. Nuclear Engineering and Design, 2010, 240(10): 3350-3360.
|
12 |
莫冬传, 张晖, 吕树申 . TiO2纳米管阵列表面的池沸腾实验[J]. 化工学报, 2014, 65 (s1): 308-315.
|
|
MO D C , ZHANG H , LU S S . Pool boiling experiment on TiO2 nanotube array surface[J]. CIESC Journal, 2014, 65 (s1): 308-315.
|
13 |
JANG W , CHEN Z , BAO W , et al . Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite[J]. Nano Letters, 2010, 10(10): 3909-3913.
|
14 |
AHN H S, KIM J M , KAVIANY M , et al . Pool boiling experiments in reduced graphene oxide colloids. Part I - boiling characteristics[J]. International Journal of Heat and Mass Transfer, 2014, 74: 501-512.
|
15 |
AHN H S, KIM J M , KAVIANY M , et al . Pool boiling experiments in reduced graphene oxide colloids part II - behavior after the chf, and boiling hysteresis[J]. International Journal of Heat and Mass Transfer, 2014, 78: 224-231.
|
16 |
AHN H S, KIM J M , KIM M H . Experimental study of the effect of a reduced graphene oxide coating on critical heat flux enhancement[J]. International Journal of Heat and Mass Transfer, 2013, 60: 763-771.
|
17 |
SEO H, CHU J H , KWON S Y , et al . Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72[J]. International Journal of Heat and Mass Transfer, 2015, 82: 490-502.
|
18 |
SEO H, YUN H D , KWON S Y , et al . Hybrid graphene and single-walled carbon nanotube films for enhanced phase-change heat transfer[J]. Nano Letters, 2016, 16(2): 932-938.
|
19 |
KUANG D , XU L , LIU L , et al . Graphene-nickel composites[J]. Applied Surface Science, 2013, 273: 484-490.
|
20 |
AN S , KIM D-Y , J-G LEE , et al . Supersonically sprayed reduced graphene oxide film to enhance critical heat flux in pool boiling[J]. International Journal of Heat and Mass Transfer, 2016, 98: 124-130.
|
21 |
PARK S S , KIM Y H , JEON Y H , et al . Effects of spray-deposited oxidized multi-wall carbon nanotubes and graphene on pool-boiling critical heat flux enhancement[J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 276-283.
|
22 |
PARK S D , LEE S W, KANG S , et al . Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux[J]. Applied Physics Letters, 2010, 97(2): 023103.
|
23 |
SINGH E , CHEN Z , HOUSHMAND F , et al . Superhydrophobic graphene foams[J]. Small, 2013, 9(1): 75-80.
|
24 |
KIM J M , KIM J H , PARK S C , et al . Nucleate boiling in graphene oxide colloids: morphological change and critical heat flux enhancement[J]. International Journal of Multiphase Flow, 2016, 85: 209-222.
|
25 |
KIM J M , KIM T , KIM J , et al . Effect of a graphene oxide coating layer on critical heat flux enhancement under pool boiling[J]. International Journal of Heat and Mass Transfer, 2014, 77: 919-927.
|
41 |
刁彦华, 赵耀华, 王秋良 . R-113池沸腾气泡行为的可视化及传热机理[J]. 化工学报, 2005, 56(2): 227-234.
|
|
DIAO Y H , ZHAO Y H , WANG Q L . Bubble dynamics and heat transfer mechanism of pool boiling of R-113[J]. CIESC Journal, 2005, 56(2): 227-234.
|