化工进展 ›› 2019, Vol. 38 ›› Issue (9): 4295-4301.DOI: 10.16085/j.issn.1000-6613.2018-2370
收稿日期:
2018-12-07
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
车得福
作者简介:
王长安(1986—),男,副教授,博士生导师,主要从事化石燃料高效清洁利用方面的研究。
基金资助:
Chang’an WANG,Guantao TANG,Hao LI,Defu CHE()
Received:
2018-12-07
Online:
2019-09-05
Published:
2019-09-05
Contact:
Defu CHE
摘要:
针对循环流化床锅炉(CFB)底渣利用率偏低的问题,提出一种新的底渣处理应用方案——对底渣进行急冷处理后,将其作为脱硫剂或水泥混合材进行综合利用。本文通过搭建CFB锅炉底渣急冷实验系统,制备了不同渣温下的急冷底渣样品;然后选取亿利底渣和42.5标号的水泥作为研究对象,探讨了急冷底渣作混合材对水泥性能的影响。实验结果表明:急冷会破坏底渣颗粒形状,导致外壳成分发生变化。急冷处理不仅造成CaSO4峰值显著降低,而且使得Ca(OH)2的特征峰变强。在相同的CFB底渣掺比下,与原始底渣相比,急冷底渣作为水泥混合材时,虽然无助于提高抗折抗压强度,但能缩短凝结时间,减少安定性值。同时,还能减少水泥标准稠度需水量,提升水泥的密实程度,对水泥的力学性能和抗侵蚀性有着一定的积极作用。
中图分类号:
王长安,唐冠韬,李昊,车得福. 燃煤循环流化床锅炉急冷脱硫底渣作为水泥混合材的性能[J]. 化工进展, 2019, 38(9): 4295-4301.
Chang’an WANG,Guantao TANG,Hao LI,Defu CHE. Properties of cement material mixed with the rapid water-cooling desulfurized bottom ash of coal-fired CFB boiler[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4295-4301.
工业分析/% | 弹筒热值 | 空气干燥基高位热值 | 收到基低位热值 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mar | Mad | Aad | Vad | FCad | Sad | (Qb,ad)/MJ·kg-1 | (Qgr,ad)/MJ·kg-1 | (Qnet,ar)/MJ·kg-1 | |
24.1 | 12.0 | 21.3 | 25.4 | 41.3 | 0.9 | 20.2 | 20.1 | 16.2 |
表1 锅炉燃煤的成分分析与发热量数据
工业分析/% | 弹筒热值 | 空气干燥基高位热值 | 收到基低位热值 | ||||||
---|---|---|---|---|---|---|---|---|---|
Mar | Mad | Aad | Vad | FCad | Sad | (Qb,ad)/MJ·kg-1 | (Qgr,ad)/MJ·kg-1 | (Qnet,ar)/MJ·kg-1 | |
24.1 | 12.0 | 21.3 | 25.4 | 41.3 | 0.9 | 20.2 | 20.1 | 16.2 |
以CaO计/% | 以CaCO3计/% | >1mm/% | 0~0.2mm/% |
---|---|---|---|
48.40 | 83.60 | 4.10 | 11.5 |
表2 石灰石的主要化学成分
以CaO计/% | 以CaCO3计/% | >1mm/% | 0~0.2mm/% |
---|---|---|---|
48.40 | 83.60 | 4.10 | 11.5 |
底渣 | CaO | SiO2 | SO3 | Al2O3 | MgO | Fe2O3 | TiO2 |
---|---|---|---|---|---|---|---|
原始底渣 | 39.90 | 31.50 | 3.54 | 12.00 | 1.81 | 4.31 | 0.71 |
急冷底渣 | 65.50 | 15.90 | 3.10 | 4.15 | 1.92 | 3.67 | 0.60 |
表3 流化床锅炉原始底渣和急冷底渣的主要化学成分
底渣 | CaO | SiO2 | SO3 | Al2O3 | MgO | Fe2O3 | TiO2 |
---|---|---|---|---|---|---|---|
原始底渣 | 39.90 | 31.50 | 3.54 | 12.00 | 1.81 | 4.31 | 0.71 |
急冷底渣 | 65.50 | 15.90 | 3.10 | 4.15 | 1.92 | 3.67 | 0.60 |
1 | 周向飞, 郎春燕, 陈小平, 等. 激发脱硫灰渣对水泥微观结构的影响[J]. 硅酸盐通报, 2015, 34(5):1435-1439. |
ZHOUXiangfei, LANGChunyan, CHENXiaoping, et al. Influence of activator on microstructure of the desulfurization ash cement[J]. Journal of the Chinese Ceramic Society, 2015, 34(5): 1435-1439. | |
2 | 周向飞. 改性脱硫灰渣对水泥性能和微观结构的影响研究[D]. 成都: 成都理工大学, 2015. |
3 | ZHOUXiangfei. Study on modified desulfurized ash influence on cementitious properties and structure of cement[D]. Chengdu: Chengdu University of Technology, 2015. |
4 | 徐浩, 陈星, 程稳, 等. 钒渣作为水泥混合材的应用研究[J]. 新世纪水泥导报, 2016(5): 1-2. |
XUNHao, CHENXing, CHENGWen, et al. Application research of vanadium slag as cement mixture[J]. Cement Guide for New Epoch, 2016(5): 1-2. | |
5 | ZAREMBAT, DUKOWICZA, HEHLMANNJ, et al. Application of thermal analysis in a phase composition study on by product from semi-dry flue gas desulfurization system[J]. Journal of Thermal Analysis and Calorimetry, 2003, 74: 503-510. |
6 | SONGYuanming, LIBaoling, YANGEnhua, et al. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete[J]. Construction and Building Materials, 2015, 56: 51-58. |
7 | 程炎, 李天阳, 金涌. 热等离子体超高温化学转化的过程研发和应用进展[J]. 化工进展, 2016, 35(6): 1676-1686. |
CHENGYan, LITianyang, JINYong. State-of-the-art development of research and applications of chemical conversion processes at ultra-high temperature in thermal plasma reactors[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1676-1686. | |
8 | PENGBingxian, WUDaishe. Study on bromine release from bituminous coal during combustion[J]. Fuel, 2015, 157: 82-86. |
9 | 赵计辉, 王栋民, 惠飞, 等. 循环流化床灰渣作为水泥混合材的研究及性能改善[J]. 科学技术与工程, 2014, 14(18): 129-134. |
ZHAOJihui, WANGDongmin, HUIFei, et al. Study on the performance improvement of the cement blending circulating fluidized bed ash and slag[J]. Science Technology and Engineering, 2014, 14(18): 129-134. | |
10 | 钱觉时, 郑红伟, 宋远明, 等. 流化床燃煤固硫灰渣的特性[J]. 硅酸盐学报, 2008, 36(10): 1396-1400. |
QIANJueshi, ZHENGHongwei, SONGYuanming, et al. Special properties of fly ash and slag of fluidized bed coal combustion[J]. Journal of the Chinese Ceramic Society, 2008, 36(10): 1396-1400. | |
11 | 汪达, 王倩, 张建胜. 不同温度和冷却速率下高温灰渣的结晶行为[J]. 化工学报, 2018, 69(5): 2183-2190. |
WANGDa, WANGQian, ZHANGJiansheng. Crystallization behaviors of molten ash slag under different temperatures and cooling rates[J]. CIESC Journal, 2018, 69(5): 2183-2190. | |
12 | 谭桂蓉, 吴秀俊. CFB脱硫灰渣的性能及应用研究[J]. 粉煤灰综合利用, 2009(4): 37-40. |
TANGuirong, WUXiujun. Properties and applying researches of CFB desulfurize slay[J]. Fly Ash Comprehensive Utilization, 2009(4): 37-40. | |
13 | 陈袁魁, 包正宇, 龙世宗, 等. 高钙脱硫灰渣用作水泥原料的研究[J]. 水泥工程, 2009(4): 37-40. |
CHENYuankui, BAOZhengyu, LONGShizong, et al. Utilize desulfurized high-calcium slag as cement raw material[J]. Cement Engineering, 2009(4): 37-40. | |
14 | 黄叶. 磨细流化床固硫渣在水泥混凝土中的性能研究[D]. 重庆: 重庆大学, 2010. |
HUANGYe. The study of properties of ground circulating fluidized bed combustion ashes in cement and concrete[D]. Chongqing: Chongqing University, 2010. | |
15 | 王智. 流化床燃煤固硫渣特性及其建材资源化研究[D]. 重庆: 重庆大学, 2002. |
WANGZhi. Study on properties and utilization in building materials of bottom ashes from circulation fluidized bed combustion[D]. Chongqing: Chongqing University, 2002. | |
16 | 王朝强, 谭克锋, 戴传彬, 等. 我国脱硫灰渣资源化综合利用现状[J]. 粉煤灰综合利用, 2014(2): 51-56. |
WANGChaoqiang, TANKefeng, DAIChuanbin, et al. Research status on the comprehensive utilization of desulfurization ash in China[J]. Fly Ash Comprehensive Utilization, 2014(2): 51-56. | |
17 | 罗立群, 舒伟, 程琪林, 等. 铁尾矿加气混凝土制备工艺及结构形成机理分析[J]. 化工进展, 2017, 36(4): 1482-1489. |
LUOLiqun, SHUWei, CHENGQilin, et al. Reaction mechanism on autoclaved aerated concrete made from low-grade vanadium titanium iron tailings[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1482-1489. | |
18 | 陶俊, 倪涛, 夏亮亮, 等. 本体聚合法合成固体聚羧酸减水剂的研究及性能评价[J]. 化工进展, 2017, 36(8): 3013-3018. |
TAOJun, NITao, XIALiangliang, et al. Synthesis of solid polycarboxylate superplasticizer through bulk polymerization and its performance evaluation[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 3013-3018. | |
19 | 田刚, 王红梅, 张凡. 脱硫灰的综合利用[J]. 能源环境保护, 2003, 17(6): 49-53. |
TIANGang, WANGHongmei, ZHANGFan. Systematically utilization of flue gas desulfurization residues[J]. Energy Environmental Protection, 2003, 17(6): 49-53. | |
20 | 王朝强, 谭克锋, 王培新, 等. 我国脱硫灰渣作为水泥原料及混合材的综合利用现状[J]. 电力科技与环保, 2014, 30(1): 46-49. |
WANGChaoqiang, TANKefeng, WANGPeixin, et al. Comprehensive utilization status on desulfurization ash as raw materials and admixture for cement in China[J]. Electric Power Technology and Environmental Protection, 2014, 30(1): 46-49. | |
21 | HAUSERA, EGGENBERGERU, MUMENTHALERT. Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete[J]. Cement and Concrete Research, 1999, 29(3): 297-302. |
22 | MOSTAFAN Y. Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete[J]. Cement and Concrete Research, 2005, 35 (7): 1349-1357. |
23 | ANTHONYE J, BERRYE E, BLONDINJ. LIFAC ash-strategies for management[J]. Waste Management, 2005, 25(3): 256-279. |
24 | BLONDINJ, ANTHONYE J, IRIBARNEA P. A new approach to hydration of FBC residues[A]. San Diego, USA, 1993: 827-834. |
25 | 赖振宇, 彭艳华, 吕淑珍, 等. 循环流化床固硫灰渣低收缩水泥的制备及性能[J]. 中国粉体技术, 2012, 18(4): 57-61. |
LAIZhenyu, PENGYanhua, ShuzhenLÜ, et al. Preparation and performance of CFBC ash and slag Low shrinkage cement[J]. China Powder Science and Technology, 2012, 18(4): 57-61. | |
26 | 唐晓南. 利用脱硫灰渣制备生态水泥[J]. 河北化工, 2009, 32(7): 16-17. |
TANGXiaonan. Preparation of ecological cement by using desulfurized ash[J]. Hebei Chemical Industry, 2009, 32(7): 16-17. | |
27 | 李昊, 陈午凤, 王长安, 等. 急冷处理对CFB锅炉底渣脱硫特性的影响[J]. 化工学报, 2016, 67(9): 3584-3589. |
LIHao, CHENWufeng, WANGChang’an, et al. Effect of rapid water-cooling process on desulfurization performance of CFB bottom ash[J]. CIESC Journal, 2016, 67(9): 3584-3589. | |
28 | 韩磊, 祝培旺, 徐秀林, 等. 煤灰渣酸浸提铝试验[J]. 化工进展, 2015, 34(11): 3841-3845. |
HANLei, ZHUPeiwang, XUXiulin, et al. Experimental study on aluminum leaching of coal ash[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3841-3845. | |
29 | 商晓甫, 马建立, 张剑, 等. 煤气化炉渣研究现状及利用技术展望[J]. 环境工程技术学报, 2017, 7(6): 712-717. |
SHANGXiaofu, JianliMA, ZHANGJian, et al. Research status and prospects of utilization technologies of slag from coal gasification[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 712-717. | |
30 | MONTAGNAROF, SALATINOP, SCALAF, et al. Assessment of sorbent reactivation by water hydration for fluidized bed combustion application[J]. Transactions of the ASME Journal of Energy Resources Technology, 2006, 128 (2): 90-98. |
31 | MONTAGNAROF, SALATINOP, SCALAF, et al. An assessment of water and steam reactivation of a fluidized bed spent sorbent for enhanced SO2 capture[J]. Powder Technology, 2008, 180(1/2): 129-134. |
32 | 李阳, 朱玉雯, 高继慧, 等. 活性焦孔结构演变规律及对脱硫性能的影响[J]. 化工学报, 2015, 66 (3): 1126-1132. |
LIYang, ZHUYuwen, GAOJihui, et al. Activated coke pore structure evolution and its influence on desulfuration[J]. CIESC Journal, 2015, 66(3): 1126-1132. | |
33 | 陈袁魁, 袁龙华, 朱龙飞. CFB脱硫灰渣用作水泥混合材的研究[J]. 新世纪水泥导报, 2014, 20(4): 17. |
YuankuiCEHN, YUANLonghua, ZHULongfei. Study on CFB desulfurization ash used as cement mixture[J]. Cement Guide for New Epoch, 2014, 20(4): 17. | |
34 | 周爱军, 张玫. 土木工程材料[M]. 北京: 机械工业出版社, 2012: 39-49. |
ZHOUAijun, ZHANGMei. Architecture material[M]. Beijing: China Machine Press, 2012: 39-49. | |
35 | 马小莉, 相玉琳. 改性污泥制备泡沫混凝土的可行性研究[J]. 化工进展, 2016, 35(9) : 2997-3001. |
XiaoliMA, XIANGYulin. Feasibility study on foam concrete prepared by modification sludge[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2997-3001. | |
36 | 吕生华, 张佳, 朱琳琳, 等. 氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报, 2017, 68(6): 2586-2594. |
ShenghuaLÜ, ZHANGJia, ZHULinlin, et al. Regulation of graphene oxide on microstructure of cement composites and its impact on compressive and flexural strength[J]. CIESC Journal, 2017, 68(6): 2586-2594. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 李东泽, 张祥, 田键, 胡攀, 姚杰, 朱林, 卜昌盛, 王昕晔. 基于水泥窑脱硝的碳基还原NO x 研究进展[J]. 化工进展, 2023, 42(9): 4882-4893. |
[3] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
[4] | 房科靖, 熊祖鸿, 鲁敏, 黎涛, 陈勇. 垃圾衍生燃料的制备、热转化特性及应用研究进展[J]. 化工进展, 2022, 41(S1): 132-140. |
[5] | 刘竞, 郑新国, 李铁军, 王财平, 赵彦旭, 李颖, 楼梁伟, 沈伟. 可再分散乳化沥青粉末改性水泥砂浆的力学性能和微观形貌[J]. 化工进展, 2022, 41(4): 2015-2021. |
[6] | 辛江, 张来勇, 赵唯, 隋蕾. 乙烯装置急冷系统设计及优化方法[J]. 化工进展, 2022, 41(10): 5169-5174. |
[7] | 封江辉, 胡苗苗, 赵佳琪, 熊祥宇, 郭锦棠. 高分散性丁苯胶乳的制备及其对水泥的改性[J]. 化工进展, 2022, 41(1): 359-364. |
[8] | 秦煜, 唐元鑫, 阮鹏臻, 王威娜, 陈斌. 碳纳米管水泥基复合材料压阻效应的多尺度研究进展[J]. 化工进展, 2021, 40(8): 4278-4289. |
[9] | 马志斌, 张学里, 郭彦霞, 程芳琴. 循环流化床粉煤灰理化特性及元素溶出行为研究进展[J]. 化工进展, 2021, 40(6): 3058-3071. |
[10] | 吴章友, 杨道业, 卞启涛, 张晨晓. 三维电容层析成像传感器优化及循环流化床提升管轴向流动成像[J]. 化工进展, 2021, 40(12): 6532-6539. |
[11] | 董磊, 常加富, 杜巍涛, 刘全美, 董玉平, 徐鹏举. 废食用菌棒循环流化床气化试验[J]. 化工进展, 2020, 39(7): 2606-2611. |
[12] | 马双忱,陈嘉宁,万忠诚,向亚军,张净瑞,曲保忠. 高盐脱硫废水水泥化固定技术的研究现状与发展[J]. 化工进展, 2019, 38(9): 4275-4283. |
[13] | 黄浩,王涛,方梦祥. 二氧化碳矿化养护混凝土技术及新型材料研究进展[J]. 化工进展, 2019, 38(10): 4363-4373. |
[14] | 张帆,段钰锋,柳帅,卢锦程,任少君,韦红旗,王军. 溴元素改性椰壳活性炭对实际燃煤烟气的脱汞性能[J]. 化工进展, 2019, 38(08): 3881-3888. |
[15] | 李均星, 郭锦棠, 张弛, 李鹏鹏. 一种新型缓凝剂的制备及其在水泥基复合材料中的应用[J]. 化工进展, 2019, 38(06): 2953-2960. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |