化工进展 ›› 2018, Vol. 37 ›› Issue (S1): 19-28.DOI: 10.16085/j.issn.1000-6613.2018-1476
柴琳, 杨文哲, 刘斌, 陈爱强
收稿日期:
2018-07-15
修回日期:
2018-09-03
出版日期:
2018-11-30
发布日期:
2018-12-13
通讯作者:
刘斌,博士,教授,研究方向为热质传递过程及强化换热技术。
作者简介:
柴琳(1994-),女,硕士研究生,研究方向为热质传递过程及强化换热技术。E-mail:chailinKylin@163.com。
基金资助:
CHAI Lin, YANG Wenzhe, Liu Bin, Chen Aiqiang
Received:
2018-07-15
Revised:
2018-09-03
Online:
2018-11-30
Published:
2018-12-13
摘要: 液滴蒸发过程是伴随着复杂变化但又没有统一且充分认知的的过程,是目前一个重要的研究热点,在许多科学应用中起到关键作用。本文介绍了液滴蒸发的历史研究过程,综述了3种不同类型液滴,即纯液滴、二元混合溶液液滴和聚合物溶液液滴蒸发过程的研究成果,分析了液滴蒸发过程中和蒸发结束后沉积物的影响因素,简述了液滴的研究成果在实际生活中的应用。现有研究表明,不同类型液滴的蒸发过程受到多种因素的影响,比如溶液中的纳米粒子、环境温度和压力等。这些因素还会影响到沉积物的图案和大小。目前,研究人员已经研究出典型的液滴蒸发过程(接触线固定和接触角固定模式),讨论出液滴蒸发基本理论。对一些常见的二元及多元溶液,研究人员已经发现它们与纯溶液蒸发过程的不同之处,并且已经在科学界进行了大量的研究及讨论,建立出数学模型。最后重点介绍了液滴蒸发在医学领域的研究成果、应用和未来发展的方向,比如通过生物液滴蒸发后的沉积物的纳米层,跟正常沉积物对比结果来检测疾病等。最后对液滴蒸发理论的现状、潜力和未来发展需求进行了总结和展望。
中图分类号:
柴琳, 杨文哲, 刘斌, 陈爱强. 多种类型液滴蒸发综述[J]. 化工进展, 2018, 37(S1): 19-28.
CHAI Lin, YANG Wenzhe, Liu Bin, Chen Aiqiang. Various types of droplet evaporation: summarize[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 19-28.
[1] YOUNG T. Ⅲ. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87. [2] FUKATANI Y, OREJON D, KITA Y, et al. Effect of ambient temperature and relative humidity on interfacial temperature during early stages of drop evaporation[J]. Physical Review E, 2016, 93(4-1):043103. [3] POMPE T, HERMINGHAUS S. Three-phase contact line energetics from nanoscale liquid surface topographies[J]. Physical Review Letters, 2000, 85(9):1930-1933. [4] JERISON E R, XU Y, WILEN L A, et al. Deformation of an elastic substrate by a three-phase contact line.[J]. Physical Review Letters, 2011, 106(18):186103-4. [5] OREJON D, SHANAHAN M E R, TAKATA Y, et al. Kinetics of evaporation of pinned nanofluid volatile droplets at subatmospheric pressures[J]. Langmuir, 2016, 32(23):5812-5820. [6] SEFIANE K. Patterns from drying drops[J]. Advances in Colloid & Interface Science, 2014, 206(2):372-381. [7] BARDALL A, DANIELS K E, SHEARER M. Deformation of an elastic substrate due to a resting sessile droplet[J]. European Journal of Applied Mathematics, 2018, 29(2):281-300. [8] PICKNETT R G, BEXON R. Evaporation of sessile or pendant drops in still air[J]. Journal of Colloid & Interface Science, 1977, 61(2):336-350. [9] TONINI S, COSSALI G E. An analytical model of liquid drop evaporation in gaseous environment[J]. International Journal of Thermal Sciences, 2012, 57(57):45-53. [10] SAZHIN S S. Advanced models of fuel droplet heating and evaporation[J]. Progress in Energy & Combustion Science, 2006, 32(2):162-214. [11] HOLYST R. Evaporation processes:100 years of misconceptions[J]. Chemical Engineer -London then Rugby, 2008;806:36-37. [12] FENWICK E, MAXWELL J C. A bibliography of James Clerk Maxwell. Part 1[M]. Edinburgh:Edward Fenwick, 2009. [13] ERBIL H Y. ChemInform abstract:evaporation of pure liquid sessile and spherical suspended drops:a review[J]. Advances in Colloid & Interface Science, 2012, 43(16):67-86. [14] PICKNETT R G, BEXON R. Evaporation of sessile or pendant drops in still air[J]. Journal of Colloid & Interface Science, 1977, 61(2):336-350. [15] ALSAN MERIC R, YILDIRIM ERBIL H. Evaporation of sessile drops on solid surfaces:pseudospherical cap geometry[J]. Langmuir, 1998, 14(7):1915-1920. [16] LANGMUIR I. The Evaporation of small spheres[J]. Physical Review, 1918, 12(5):368-370. [17] TOPLEY BRYAN, ROBERT WHYTLAW-GRAY LXXX. Experiments on the rate of evaporation of small spheres as a method of determining diffusion coefficients. â" the diffusion coefficient of iodine[J]. Philosophical Magazine, 1927, 4(24):873-888. [18] GUDRIS N, KULIKOWA L. Die verdampfung kleiner wassertropfen[J]. Zeitschrift Für Physik, 1924, 25(1):121-132. [19] HOUGHTON H G. A study of the evaporation of small water drops[J]. Physics, 1933, 4(12):419-424. [20] DAVIS E J, SCHWEIGER G. Background[M]//The Airborne Microparticle. Springer Berlin Heidelberg, 2002:1-65. [21] BRADLEY R S, EVANS M G, WHYTLAWGRAY R W. The rate of evaporation of droplets; evaporation and diffusion coefficients, and vapour pressures of dibutyl phthalate and butyl stearate[J]. Proceedings of the Royal Society of London, 1946, 186(1006):368-390. [22] DAVIS E J, SCHWEIGER G. The airborne microparticle[M]. Berlin:Springer 2013. [23] BRADLEY R S, SHELLARD A D. The rate of evaporation of droplets. Ⅲ. Vapour pressures and rates of evaporation of straight-Chain paraffin hydrocarbons[J]. Proceedings of the Royal Society of London, 1949, 198(1053):239-251. [24] FREEBAIRN D, LINTON D, HARKINJONES E, et al. Electrical methods of controlling bacterial adhesion and biofilm on device surfaces[J]. Expert Rev Med Devices, 2013, 10(1):85-103. [25] MATAR O, CRASTER R, SEFIANE K. Pinning, retraction and terracing of evaporating droplets containing nanoparticles[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2009, 25(6):3601-36019. [26] KIM J H, AHN S I, KIM J H, et al. Evaporation of water droplets on polymer surfaces.[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2007, 23(11):6163-6169. [27] BUFFONE C, SEFIANE K. Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores[J]. International Journal of Multiphase Flow, 2004, 30(9):1071-1091. [28] SHAHIDZADEHBONN N, RAFAI S, AZOUNI A, et al. Evaporating droplets[J]. Journal of Fluid Mechanics, 2006, 549:307-313. [29] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653):827-829. [30] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Contact line deposits in an evaporating drop[J]. Phys. Rev. E, 2000, 62(1PtB):756-765. [31] GHASEMI H, WARD C A. Energy transport by thermocapillary convection during sessile-water-droplet evaporation[J]. Physical Review Letters, 2010, 105(13):136102-4. [32] BUFFONE C, SEFIANE K, CHRISTY J R E. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry[J]. Physics of Fluids, 2005, 17(5):1261-129. [33] CHRISTY J R, HAMAMOTO Y, SEFIANE K. Flow transition within an evaporating binary mixture sessile drop[J]. Physical Review Letters, 2011, 106(20):205701. [34] HAMAMOTO Y, CHRISTY J R E, SEFIANE K. The flow characteristics of an evaporating ethanol water mixture droplet on a glass substrate[J]. Journal of Thermal Science & Technology, 2012, 7(3):425-436. [35] 金艳艳, 单彦广. 水-乙醇二元混合固着液滴的蒸发特性[J]. 化工学报, 2018, 69(7):2908-2915. [36] CHIANG C K, LU Y W. Evaporation phase change processes of water/methanol mixtures on superhydrophobic nanostructured surfaces[J]. Journal of Micromechanics & Microengineering, 2011, 21(7):075003. [37] HOPKINS R J, REID J P. A comparative study of the mass and heat transfer dynamics of evaporating ethanol/water, methanol/water, and 1-propanol/water aerosol droplets[J]. Journal of Physical Chemistry B, 2006, 110(7):3239-3249. [38] CHEN X, WEIBEL J A, GARIMELLA S V. Water and ethanol droplet wetting transition during evaporation on omniphobic surfaces[J]. Scientific Reports, 2015, 5:17110. [39] HOPKINS R J, REID J P. Evaporation of ethanol/water droplets:examining the temporal evolution of droplet size, composition and temperature[J]. Journal of Physical Chemistry A, 2005, 109(35):7923-7931. [40] 王茉, 刘璐, 王鹏程, 等. 乙醇溶液液滴降压蒸发过程传热传质特性[J]. 化工进展, 2016, 35(3):717-721. [41] MORIKAWA A, KEⅡ T. Change in interfacial tension during mass transfer-I.:Evaporation of n-propyl alcohol from its aqueous pendant drop[J]. Chemical Engineering Science, 1965, 20(3):255-259. [42] HAMAMOTO Y, CHRISTY J R E, SEFIANE K. The flow characteristics of an evaporating ethanol water mixture droplet on a glass substrate[J]. Journal of Thermal Science & Technology, 2012, 7(3):425-436. [43] 张文彬, 廖龙光, 于同旭, 等. 溶液液滴蒸发变干的环状沉积[J]. 物理学报, 2013, 62(19):361-368. [44] WU S, LI W B, SHI F, et al. Observation of colloidal particle deposition during the confined droplet evaporation process[J]. Acta Physica Sinica, 2015, 64(9):96101-9. [45] SEFIANE K, BENNACER R. Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates[J]. Adv. Colloid Interface Sci, 2009, 147(147/148):263-271. [46] HU H, LARSON R G. Marangoni effect reverses coffee-ring depositions.[J]. Journal of Physical Chemistry B, 2006, 110(14):7090-4. [47] ASKOUNIS A, SEFIANE K, KOUTSOS V, et al. The effect of evaporation kinetics on nanoparticle structuring within contact line deposits of volatile drops[J]. Colloids & Surfaces A, Physicochemical & Engineering Aspects, 2014, 441(3):855-866. [48] ASKOUNIS A, SEFIANE K, KOUTSOS V, et al. Effect of particle geometry on triple line motion of nano-fluid drops and deposit nano-structuring.[J]. Adv. Colloid Interface Sci., 2015, 222:44-57. [49] PARSA M, HARMAND S, SEFIANE K, et al. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2015, 31(11):3354-3367. [50] 刘斌, 单亮亮, 邸倩倩, 等. 底板属性对液滴蒸发过程的影响[J]. 工程热物理学报, 2017(9):1940-1943. [51] 王东民, 董丽宁, 全晓军. 改性SiO2纳米颗粒沸腾沉积层的形成原理及其沸腾换热[J]. 化工学报, 2018, 69(10):4200-4205. [52] ASKOUNIS A, SEFIANE K, KOUTSOS V, et al. The effect of evaporation kinetics on nanoparticle structuring within contact line deposits of volatile drops[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 441(3):855-866. [53] LIU B, BENNACER R, BOUVET A. Evaporation of methanol droplet on the teflon surface under different air velocities[J]. Applied Thermal Engineering, 2011, 31(17):3792-3798. [54] OREJON D, SEFIANE K, SHANAHAN M E R. Evaporation of nanofluid droplets with applied DC potential[J]. J. Colloid Interface Sci., 2013, 407(10):29-38. [55] HU H, LARSON R G. Marangoni effect reverses coffee-ring depositions.[J]. Journal of Physical Chemistry B, 2006, 110(14):7090-4. [56] HE Q, HALLINAN K P. A new particle image velocimetry technique for three-dimensional full field fluid flow measurement in evaporating films[J]. Experimental Thermal & Fluid Science, 1998, 17(3):230-237. [57] HEGSETH J J, RASHIDNIA N, CHAI A. Natural convection in droplet evaporation[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1996, 54(2):1640-1644. [58] STEINCHEN A, SEFIANE K. Self-organised marangoni motion at evaporating drops or in capillary menisci - thermohydrodynamical model[J]. Journal of Non-Equilibrium Thermodynamics, 2005, 40(1):1017-1051. [59] ZHONG Y, ZHUO Y, WANG Z, et al. Marangoni convection induced by simultaneous mass and heat transfer during evaporation of n-heptane/ether binary liquid mixture[J]. International Journal of Heat & Mass Transfer, 2017, 108:812-821. [60] HU Y C, ZHOU Q, YE H M, et al. Peculiar surface profile of poly(ethylene oxide) film with ring-like nucleation distribution induced by marangoni flow effect[J]. Colloids & Surfaces, 2013, 428(13):39-46. [61] HU H, LARSON R G. Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2005, 21(9):3972. [62] ZHANF Y J, LIU Z, QIAN Y, et al. Pattern formation mechanism via evaporation of colloidal droplet containing PTFE particles and NaCl[J]. Chemical Journal of Chinese Universities, 2014, 35(6):1258-1266. [63] 马力, 仇性启, 王健, 等. 单液滴蒸发影响因素实验研究[J]. 现代化工, 2013, 33(1):103-106. [64] 刘松, 聂万胜, 苏凌宇, 等. 高温高压环境下煤油液滴蒸发过程实验研究[J]. 火箭推进, 2017, 43(2):25-31. [65] KIM J H, PARK S B, KIM J H, et al. Polymer transports inside evaporating water droplets at various substrate temperatures[J]. J. Phys. Chem. C, 2011, 115(31):15375-15383. [66] 黄镇宇, 殷科, 周志军, 等. 尿素水溶液液滴的蒸发特性[J]. 化工进展, 2014, 33(4):817-823. [67] GAN X, YAO D, WU F, et al. Modeling and simulation of urea-water-solution droplet evaporation and thermolysis processes for SCR systems[J]. Chinese Journal of Chemical Engineering, 2016, 24(8):1065-1073. [68] BALDWIN K A, ROEST S, FAIRHURST D J, et al. Monolith formation and ring-stain suppression in low-pressure evaporation of poly(ethylene oxide) droplets[J]. Journal of Fluid Mechanics, 2012, 695(3):321-329. [69] TEKIN E, SMITH P J, SCHUBERT U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter, 2008, 4(4):703-713. [70] BUFFONE C, COULLOUX J, ALONSO B, et al. Capillary pressure in graphene oxide nanoporous membranes for enhanced heat transport in loop heat pipes for aeronautics[J]. Experimental Thermal & Fluid Science, 2016, 78:147-152. [71] LIU B, BENNACER R, SEFIANE K, et al. Transient effects in evaporating sessile drops:with and without heating[J]. Journal of Heat Transfer, 2016, 138(9):14. [72] 徐志明, 张一龙, 王景涛, 等. 两种阴离子对析晶污垢沉积的影响[J]. 化工学报, 2015, 66(6):2268-2273. [73] NAYAK N C, SHIN K. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres[J]. Nanotechnology, 2008, 19(26):265603. [74] ABDOLLAHI S N, NADERI M, AMOABEDINY G. Synthesis and characterization of hollow gold nanoparticles using silica spheres as templates[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 436(35):1069-1075. [75] LI X, LI Y, YANG C, et al. Liposome induced self-assembly of gold nanoparticles into hollow spheres[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2004, 20(9):3734-9. [76] EBRAHIMI A, DAK P, SALM E, et al. Nanotextured superhydrophobic electrodes enable detection of attomolar-scale DNA concentration within a droplet by non-faradaic impedance spectroscopy[J]. Lab on A Chip, 2013, 13(21):4248-56. [77] 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1):128-140. [78] 胡平, 常恬, 陈震宇, 等. 纳米Fe3O4磁性颗粒表面改性及其在医学和环保领域的应用[J]. 化工学报, 2017, 68(7):2641-2652. [79] STEINCHEN A, SEFIANE K, SANFELD A. Nano-encapsulation as high pressure devices for folding-unfolding proteins[J]. Journal of Colloid & Interface Science, 2011, 355(2):509-511. [80] YAKHON T A, SEDOVA O A, SANIN A G, et al. On the existence of regular structures in liquid human blood serum (plasma) and phase transitions in the course of its drying[J]. Technical Physics, 2003, 48(4):399-403. [81] SEFIANE K. On the formation of regular patterns from drying droplets and their potential use for bio-medical applications[J]. Journal of Bionic Engineering, 2010, 7(4):S82-S93. [82] SHABALIN V N, SHATOKHINA S N, DUTOV V V, et al. Method of diagnosing complicated urolithiasis and prognosticating urolithiasis:EP 0504409[P]. 1996. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[3] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[4] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[5] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[6] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[7] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[8] | 赵尧, 周志辉, 吴红丹, 胡传智, 张国春, 吴睿鹏. Silicalite-1分子筛膜渗透蒸发条件的响应面分析与优化[J]. 化工进展, 2023, 42(5): 2586-2594. |
[9] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[10] | 谢迎春, 马洪亭, 徐畅, 马硕, 陈默, 刘军, 孙国强. 竖管渗流降膜蒸发式冷凝器传热特性分析[J]. 化工进展, 2023, 42(3): 1187-1194. |
[11] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[12] | 毛停停, 李双福, 黄李茗铭, 周川玲, 韩凯. 面向水处理与有机溶剂回收的太阳能界面蒸发系统与材料[J]. 化工进展, 2023, 42(1): 178-193. |
[13] | 曹正凯, 米晓斌, 吴子明, 孙士可, 曹均丰, 彭德强, 梁相程. 煤合成气净化除尘装置压降问题分析及应用优化[J]. 化工进展, 2022, 41(S1): 15-21. |
[14] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
[15] | 李超, 苗家兵, 王丽萍, 崔永杰, 李依帆. 蒸发母液中锂的提取[J]. 化工进展, 2022, 41(S1): 637-642. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1583
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 618
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |