化工进展 ›› 2019, Vol. 38 ›› Issue (01): 111-121.DOI: 10.16085/j.issn.1000-6613.2018-1157
收稿日期:
2018-05-30
修回日期:
2018-09-30
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
蓝兴英
作者简介:
王敏(1992—),女,博士研究生,研究方向为气固两相流。E-mail:<email>cupwangmin@163.com</email>。|蓝兴英,教授,博士生导师,研究方向为重质油加工及计算化学工程。E-mail:<email>lanxy@cup.edu.cn</email>。
基金资助:
Min WANG(),Yingya WU,Xiaogang SHI,Xingying LAN(),Jinsen GAO
Received:
2018-05-30
Revised:
2018-09-30
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xingying LAN
摘要:
气固循环流化床具有良好的混合、传热、传质、反应特性,同时还具有处理量大、可连续生产等优点,在众多领域均有广泛应用。气固循环流化床是一个由多个单元连接组合形成的循环回路,各单元间相互耦合、相互影响。对整个循环流化床系统进行全回路数值模拟,不仅能够获得更全面和详实的结果,而且在揭示系统流动规律和探究各单元内、单元间、单元与系统间的相互作用上具有独特优势。近十年来,以气固循环流化床全系统为模拟对象的全回路数值模拟研究逐渐兴起。本文对气固循环流化床全回路数值模拟方法的研究进展进行综述,对该方法的应用情况进行详细介绍,并对方法中采用的模型及相应特点进行逐一分析。循环流化床全回路系统同时存在多种流态,有待于建立适用于全回路系统的多流态物理模型(气固曳力模型与固相应力模型)。随着计算能力的提高以及物理建模的不断发展,全回路模拟方法将不断完善并发挥出更大的作用。
中图分类号:
王敏, 吴迎亚, 石孝刚, 蓝兴英, 高金森. 气固循环流化床全回路数值模拟研究进展[J]. 化工进展, 2019, 38(01): 111-121.
Min WANG, Yingya WU, Xiaogang SHI, Xingying LAN, Jinsen GAO. Review of full-loop simulation of gas-solid circulating fluidized bed[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 111-121.
作者 | 年份 | 模拟对象 | 颗粒类型 | 多相流模型 | 曳力模型 | 固相应力模型 |
---|---|---|---|---|---|---|
Zhang等[ | 2008 | 半工业级CFB装置 | A | TFM | EMMS | KTGF |
Liu等[ | 2010 | 50MWe CFB锅炉 | B | TFM | Gidaspow | KTGF 摩擦应力 |
Zhang等[ | 2010 | 150MWe CFB锅炉 | B | TFM | EMMS | KTGF |
张楠等[ | 2010 | 半工业级CFB装置 | A | TFM | EMMS | KTGF |
Wang等[ | 2011 | 化学链燃烧(CLC)装置 | B | TFM | Gidaspow | KTGF |
Wang等[ | 2011 | 高密度循环流化床(HDCFB)装置 | B | TFM | Revised EMMS | KTGF |
Nguyen等[ | 2012 | CFB 气化炉 | B | TFM | Gidaspow | KTGF |
Dietiker等[ | 2013 | CFB装置 | B | TFM | Gidaspow | — |
Lu等[ | 2013 | 工业级CFB锅炉 | B | MFM | EMMS Gidaspow | KTGF |
Nikolopoulos等[ | 2013 | CFB 碳酸化器 | B | TFM | EMMS Gidaspow | KTGF 摩擦应力 |
霍荥等[ | 2013 | 中试CFB装置 | A | TFM | EMMS | — |
王雪瑶等[ | 2013 | CFB装置 | B | TFM | EMMS | KTGF |
Li等[ | 2014 | NETL中试CFB装置 | B | TFM | Gidaspow | KTGF |
Geng等[ | 2015 | CLC装置 | B | TFM | Syamlal–O’Brien | KTGF |
Liu等[ | 2015 | CFB装置 | A | TFM | EMMS /Matrix | KTGF |
Guan等[ | 2014 | CLC装置 | B | TFM | Gidaspow | KTGF |
Su等[ | 2015 | CLC装置 | B | TFM | Gidaspow | KTGF |
Guan等[ | 2016 | CLC装置 | B | TFM | Gidaspow | KTGF |
表1 基于欧拉-欧拉方法的全回路模拟
作者 | 年份 | 模拟对象 | 颗粒类型 | 多相流模型 | 曳力模型 | 固相应力模型 |
---|---|---|---|---|---|---|
Zhang等[ | 2008 | 半工业级CFB装置 | A | TFM | EMMS | KTGF |
Liu等[ | 2010 | 50MWe CFB锅炉 | B | TFM | Gidaspow | KTGF 摩擦应力 |
Zhang等[ | 2010 | 150MWe CFB锅炉 | B | TFM | EMMS | KTGF |
张楠等[ | 2010 | 半工业级CFB装置 | A | TFM | EMMS | KTGF |
Wang等[ | 2011 | 化学链燃烧(CLC)装置 | B | TFM | Gidaspow | KTGF |
Wang等[ | 2011 | 高密度循环流化床(HDCFB)装置 | B | TFM | Revised EMMS | KTGF |
Nguyen等[ | 2012 | CFB 气化炉 | B | TFM | Gidaspow | KTGF |
Dietiker等[ | 2013 | CFB装置 | B | TFM | Gidaspow | — |
Lu等[ | 2013 | 工业级CFB锅炉 | B | MFM | EMMS Gidaspow | KTGF |
Nikolopoulos等[ | 2013 | CFB 碳酸化器 | B | TFM | EMMS Gidaspow | KTGF 摩擦应力 |
霍荥等[ | 2013 | 中试CFB装置 | A | TFM | EMMS | — |
王雪瑶等[ | 2013 | CFB装置 | B | TFM | EMMS | KTGF |
Li等[ | 2014 | NETL中试CFB装置 | B | TFM | Gidaspow | KTGF |
Geng等[ | 2015 | CLC装置 | B | TFM | Syamlal–O’Brien | KTGF |
Liu等[ | 2015 | CFB装置 | A | TFM | EMMS /Matrix | KTGF |
Guan等[ | 2014 | CLC装置 | B | TFM | Gidaspow | KTGF |
Su等[ | 2015 | CLC装置 | B | TFM | Gidaspow | KTGF |
Guan等[ | 2016 | CLC装置 | B | TFM | Gidaspow | KTGF |
作者 | 年份 | 模拟对象 | 颗粒类型 | 颗粒数 | 多相流 模型 | 曳力模型 |
---|---|---|---|---|---|---|
Chu等[ | 2008 | CFB装置 | D | 2×104 | DEM | Di Felice |
Luo等[ | 2015 | CFB装置 | D | 2×105 | DEM | Gidaspow |
Luo等[ | 2015 | CFB装置 | D | 9.2×104 | DEM | Gidaspow |
Xie等[ | 2015 | 工业级CFB锅炉 | — | — | DEM | — |
Wang等[ | 2017 | CFB装置(6个旋分) | D | 9×105 | DEM | Gidaspow |
Wang等[ | 2017 | 双侧返料循环流化床(DRCFB)装置 | D | 3×105 | DEM | Gidaspow |
Wang等[ | 2017 | CFB装置 | D | 9×103 | DEM | Gidaspow |
Xu等[ | 2017 | CFB装置 | D | — | DEM | BVK, Gidaspow, Hill-Koch-Ladd, and Wen and Yu |
Jiang等[ | 2014 | CFB装置(6个旋分) | B | — | CPFD | Wen-Yu/ Ergun |
Parker[ | 2014 | CLC装置 | B | — | CPFD | — |
Wang等[ | 2014 | CFB装置 | B | — | CPFD | Wen-Yu, Wen-Yu/Ergun, Ganser |
Wang等[ | 2014 | CFB装置 | B | — | CPFD | Wen-Yu/ Ergun |
殷上轶等[ | 2016 | HDCFB装置 | B | — | CPFD | Gidaspow |
Tu等[ | 2018 | 中试CFB装置 | B | — | CPFD | EMMS |
表2 基于欧拉-拉格朗日方法的全回路模拟
作者 | 年份 | 模拟对象 | 颗粒类型 | 颗粒数 | 多相流 模型 | 曳力模型 |
---|---|---|---|---|---|---|
Chu等[ | 2008 | CFB装置 | D | 2×104 | DEM | Di Felice |
Luo等[ | 2015 | CFB装置 | D | 2×105 | DEM | Gidaspow |
Luo等[ | 2015 | CFB装置 | D | 9.2×104 | DEM | Gidaspow |
Xie等[ | 2015 | 工业级CFB锅炉 | — | — | DEM | — |
Wang等[ | 2017 | CFB装置(6个旋分) | D | 9×105 | DEM | Gidaspow |
Wang等[ | 2017 | 双侧返料循环流化床(DRCFB)装置 | D | 3×105 | DEM | Gidaspow |
Wang等[ | 2017 | CFB装置 | D | 9×103 | DEM | Gidaspow |
Xu等[ | 2017 | CFB装置 | D | — | DEM | BVK, Gidaspow, Hill-Koch-Ladd, and Wen and Yu |
Jiang等[ | 2014 | CFB装置(6个旋分) | B | — | CPFD | Wen-Yu/ Ergun |
Parker[ | 2014 | CLC装置 | B | — | CPFD | — |
Wang等[ | 2014 | CFB装置 | B | — | CPFD | Wen-Yu, Wen-Yu/Ergun, Ganser |
Wang等[ | 2014 | CFB装置 | B | — | CPFD | Wen-Yu/ Ergun |
殷上轶等[ | 2016 | HDCFB装置 | B | — | CPFD | Gidaspow |
Tu等[ | 2018 | 中试CFB装置 | B | — | CPFD | EMMS |
1 | 金涌 . 流态化工程原理[M]. 北京:清华大学出版社, 2002: 2. |
JING Y . Principles of fluidization engineering[M]. Beijing: Tsinghua University Press, 2002: 2. | |
2 | 李佑楚, 陈丙瑜, 王凤鸣, 等 . 快速流态化的流动[J]. 化工学报, 1979, 30(2): 143-152. |
LI Y C , CHEN B Y , WANG F M , et al . The dynamics of fast fluidization[J]. Journal of Chemical Industry and Engineering(China), 1979, 30(2): 143-152. | |
3 | 郭慕孙, 李洪钟 . 流态化手册[M]. 北京: 化学工业出版社, 2008: 897-1385. |
GUO M S , LI H Z . Handbook of fluidization[M]. Beijing: Chemical Industry Press, 2008: 897-1385. | |
4 | LEWIS W K , GILLIL E R . Characteristics of the internally circulating fluidized bed boiler[J]. Ind. Eng. Chem., 1979, 41(6): 1104-1110. |
5 | 许友好 . 催化裂化化学与工艺[M]. 北京: 科学出版社, 2013:383-385. |
XU Y H . Chemistry & process of catalytic cracking[M]. Beijing: Science Press, 2013: 383-385. | |
6 | LAN X Y , XU C M , WANG G , et al . CFD modeling of gas–solid flow and cracking reaction in two-stage riser FCC reactors[J]. Chemical Engineering Science, 2009, 64: 3847-3858. |
7 | LU B N , WANG W , LI J H . Searching for a mesh-independent sub-grid model for CFD simulation of gas–solid riser flows[J]. Chemical Engineering Science, 2009, 64(15): 3437-3447. |
8 | SAMRUAMPHIANSKUN T , PIUMSOMBOON P , CHALERMSINSUWAN B . Effect of ring baffle configurations in a circulating fluidized bed riser using CFD simulation and experimental design analysis[J]. Chemical Engineering Journal, 2012, 210(4): 237-251. |
9 | RODRIGUES S S , FORRET A , MONTJOVET F , et al . CFD modeling of riser with group B particles[J]. Powder Technology, 2015, 283: 519-529. |
10 | SHI X G , WU Y Y , LAN X Y , et al . Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach[J]. Powder Technology, 2015, 284: 130-142. |
11 | MASNADI M S , GRACE J R , ELYASI S , et al . Distribution of multi-phase gas–solid flow across identical parallel cyclones: modeling and experimental study[J]. Separation & Purification Technology, 2010, 72(1): 48-55. |
12 | ZHANG N , LU B N , WANG W , et al . Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed[J]. Particuology, 2008, 6(6): 529-539. |
13 | LIU G D , LU H L , JACQUES B , et al . Computations of fluid dynamics of a 50 MWe circulating fluidized bed combustor[J]. Industrial & Engineering Chemistry Research, 2010, 49(11): 5132-5140. |
14 | ZHANG N , LU B , WANG W , LI J . 3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler[J]. Chemical Engineering Journal, 2010, 162(2): 821-828. |
15 | 张楠 . 基于EMMS的介尺度传质模型及其在循环流化床锅炉燃烧模拟中的应用[D]. 北京: 中国科学院过程工程研究所, 2010. |
ZHANG N . EMMS-based meso-scale mass transfer model and its application to circulating fluidized bed combustion simulation[D]. Beijing: Chinese Academy of Sciences, 2010. | |
16 | WANG S , LIU G D , LU H L , et al . Fluid dynamic simulation in a chemical looping combustion with two interconnected fluidized beds[J]. Fuel Processing Technology, 2011, 92(3): 385-393. |
17 | WANG X , JIANG F , LEI J , et al . A revised drag force model and the application for the gas–solid flow in the high-density circulating fluidized bed[J]. Applied Thermal Engineering, 2011, 31(14/15): 2254-2261. |
18 | NGUYEN T , SEO M , LIM Y , et al . CFD simulation with experiments in a dual circulating fluidized bed gasifier[J]. Computers & Chemical Engineering, 2012, 36: 48-56. |
19 | DIETIKER J , LI T , GARG R , et al . Cartesian grid simulations of gas–solids flow systems with complex geometry[J]. Powder Technology, 2013, 235: 696-705. |
20 | LU B , ZHANG N , WANG W , et al . 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler[J]. AIChE Journal, 2013, 59(4): 1108-1117. |
21 | NIKOLOPOULOS A , NIKOLOPOULOS N , CHARITOS A , et al . High-resolution 3-D full-loop simulation of a CFB carbonator cold model[J]. Chemical Engineering Science, 2013, 90: 137-150. |
22 | 霍蒙, 张楠, 孟凡勇, 等 . 基于EMMS的循环流化床三维全循CFD模拟[J]. 计算机与应用化学, 2013(3): 223-228. |
HUO M , ZHANG N , MENG F Y , et al . EMMS-based 3D full-loop CFD simulation of a circulating fluidized bed[J].Computes and Applied Chemistry, 2013(3): 223-228. | |
23 | 王雪瑶, 雷福林, 吴学智, 等 . 循环流化床三维全循环模拟及实验验证[J]. 工程热物理学报, 2013, 34(7): 1287-1290. |
WANG X Y , LEI F L , WU X Z , et al . Three dimensional full-loop numerical simulation of a CFB and experimental verification[J]. Journal of Engineering Thermophysics, 2013, 34(7): 1287-1290. | |
24 | LI T , J-F DIETIKER , SHADLE L . Comparison of full-loop and riser-only simulations for a pilot-scale circulating fluidized bed riser[J]. Chemical Engineering Science, 2014, 120: 10-21. |
25 | GENG C , ZHONG W , SHAO Y , et al . Computational study of solid circulation in chemical-looping combustion reactor model[J]. Powder Technology, 2015, 276: 144-155. |
26 | LIU C , ZHAO M , WANG W , et al . 3D CFD simulation of a circulating fluidized bed with on-line adjustment of mechanical valve[J]. Chemical Engineering Science, 2015, 137: 646-655. |
27 | GUAN Y , CHANG J , ZHANG K , et al . Three-dimensional CFD simulation of hydrodynamics in an interconnected fluidized bed for chemical looping combustion[J]. Powder Technology, 2014, 268: 316-328. |
28 | SU M , ZHAO H , MA J . Computational fluid dynamics simulation for chemical looping combustion of coal in a dual circulation fluidized bed[J]. Energy Conversion and Management, 2015, 105: 1-12. |
29 | GUAN Y , CHANG J , ZHANG K , et al . Three-dimensional full loop simulation of solids circulation in an interconnected fluidized bed[J]. Powder Technology, 2016, 289(4): 118-125. |
30 | CHU K W , YU A B . Numerical simulation of complex particle–fluid flows[J]. Powder Technology, 2008, 179(3): 104-114. |
31 | LUO K , WU F , YANG S , et al . High-fidelity simulation of the 3-D full-loop gas–solid flow characteristics in the circulating fluidized bed[J]. Chemical Engineering Science, 2015, 123: 22-38. |
32 | LUO K , YANG S , TAN J , et al . LES-DEM investigation of dense flow in circulating fluidized beds[J]. Procedia Engineering, 2015, 102: 1446-1455. |
33 | XIE J , ZHONG W Q , JIN B S . Eulerian-Lagrangian full-loop simulation of an industrial-scale circulating fluidized bed boiler[C]//APCChE 2015, Melbourne: Engineers Australia, 2015: 2592-2602. |
34 | WANG S , LUO K , HU C S , et al . CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed[J]. Chemical Engineering Science, 2017, 172: 199-215. |
35 | WANG S , LUO K , YANG S , et al . LES-DEM investigation of the time-related solid phase properties and improvements of flow uniformity in a dual-side refeed CFB[J]. Chemical Engineering Journal, 2017, 313: 858-872. |
36 | WANG S , LUO K , YANG S , et al . Parallel LES-DEM simulation of dense flows in fluidized beds[J]. Applied Thermal Engineering, 2017, 111: 1523-1535. |
37 | XU Y P , MUSSER H , LI T W , et al . Numerical simulation and experimental study of the gas-solid flow behavior inside a full-loop circulating fluidized bed: evaluation of different drag models[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 740-750. |
38 | JIANG Y , QIU G , WANG H . Modelling and experimental investigation of the full-loop gas–solid flow in a circulating fluidized bed with six cyclone separators[J]. Chemical Engineering Science, 2014, 109: 85-97. |
39 | PARKER J . CFD model for the simulation of chemical looping combustion[J]. Powder Technology, 2014, 265: 47-53. |
40 | WANG Q , YANG H , WANG P , et al . Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal, Part I—Determination of modeling parameters[J]. Powder Technology, 2014, 253: 814-821. |
41 | WANG Q , YANG H , WANG P , et al . Application of CPFD method in the simulation of a circulating fluidized bed with a loop seal. Part II—Investigation of solids circulation[J]. Powder Technology, 2014, 253: 822-828. |
42 | 殷上轶, 钟文琪, 金保昇, 等 . 高密度循环流化床三维全场数值模拟[J]. 工程热物理学报, 2016, V37(7): 1459-1463. |
YIN S Y , ZHONG W Q , JIN B S , et al . 3-D full-loop simulation of a high-density circulating fluidized bed[J]. Journal of Engineering Thermophysics, 2016, V37(7): 1459-1463. | |
43 | TU Q , WANG H . CPFD study of a full-loop three-dimensional pilot-scale circulating fluidized bed based on EMMS drag model[J]. Powder Technology, 2018, 323: 534-547. |
44 | WANG C , LI C , ZHU J . Axial solids flow structure in a high density gas–solids circulating fluidized bed downer[J]. Powder Technology, 2015, 272: 153-164. |
45 | 任立波 . 稠密颗粒两相流的CFD-DEM耦合并行算法及数值模拟[D]. 济南: 山东大学, 2015. |
REN L B . A parallel CFD-DEM coupling model and numerical simulation of dense particulate two-phase flows[D]. Jinan: Shandong University, 2015. | |
46 | SNIDER D M , CLARK S M , O'ROURKE P J . Eulerian-Lagrangian method for threedimensional thermal reacting flow with application to coal gasifiers[J]. Chemical Engineering Science, 2011, 66(6): 1285-1295. |
47 | 张向阳 . 工业级流体颗粒系统分析软件Barracuda[J]. 智能制造, 2011(11): 29-32. |
ZHANG X Y . Industrial fluid particle system analysis software[J]. Intelligent Manufacturing, 2011(11): 29-32. | |
48 | LIANG Y , ZHANG Y , LI T , et al . A critical validation study on CPFD model in simulating gas–solid bubbling fluidized beds[J]. Powder Technology, 2014, 263: 121-134. |
49 | WANG J W . A review of eulerian simulation of geldart a particles in gas-fluidized beds[J]. Industrial & Engineering Chemistry Research, 2009, 48(12): 5567-5577. |
50 | RICHARDSON J F , ZAKI W N . Sedimentation and fluidization-part 1[J]. Transactions of the Institution of Chemical Engineers. 1954, 32: 35-53. |
51 | ERGUN S . Fluid Flow through packed columns[J]. Chemical Engineering Progress, 1952, 48: 89-94. |
52 | WEN C Y , YU Y H . Mechanics of fluidization[J]. American Institute of Chemical Engineers Symposium Series, 1966, 62: 100-111. |
53 | GIDASPOW D . Multiphase flow and fluidization[J]. Continuum & Kinetic Theory Description, 1994(95):1-29. |
54 | DING J , GIDASPOW D . A bubbling fluidization model using kinetic theory granular flow[J]. American Institute of Chemical Engineers, 1990, 36(4): 523-538. |
55 | FELICE R D . The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. |
56 | LU H L , SUN Q Q , HE Y R , et al . Numerical study of particle cluster flow in risers with cluster-based approach[J]. Chemical Engineering Science, 2005, 60(23): 6757-6767. |
57 | SYAMLAL M , O’BRIEN T J . Simulation of granular layer inversion in liquid fluidized beds[J]. International Journal of Multiphase Flow, 1988, 14(4): 473-481. |
58 | O’BRIEN T J , SYAMLAL M . Particle cluster effects in the numerical simulation of a circulating fluidized bed[C]//Proceedings of the Fourth International Conference on Circulating Fluidized Beds, 1993: 367-372. |
59 | WANG W , LI Y . Simulation of the clustering phenomenon in a fast fluidized bed: the importance of drag correlation[J]. Chinese Journal of Chemical Engineering, 2004, 12(3): 335-341. |
60 | CRUZ E , STEWARD F R , PUGSLEY T . New closure models for CFD modeling of high-density circulating fluidized beds[J]. Powder Technology, 2006, 169(3): 115-122. |
61 | ZIMMERMANN S , TAGHIPOUR F . CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9818-9827. |
62 | ALMUTTAHAR A , TAGHIPOUR F . Computational fluid dynamics of a circulating fluidized bed under various fluidization conditions[J]. Chemical Engineering Science, 2008, 63(6): 1696-1709. |
63 | LI T , POUGATCH K , SALCUDEAN M , et al . Numerical simulation of horizontal jet penetration in a three-dimensional fluidized bed[J]. Powder Technology, 2008, 184(1): 89-99. |
64 | SYAMLAL M , O'BRIEN T J . Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed[J]. AIChE Journal, 2003, 49(11): 2793-2801. |
65 | VEJAHATI F , MAHINPEY N , ELLIS N , et al . CFD simulation of gas–solid bubbling fluidized bed: a new method for adjusting drag law[J]. The Canadian Journal of Chemical Engineering, 2009, 87(1): 19-30. |
66 | ANDREWS IV A T , LOEZOS P N , SUNDARESAN S . Coarse-grid simulation of gas-particle flows in vertical risers[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6022-6037. |
67 | YE M . Multi-level modeling of dense gas-solid two-phase flows[M]. Netherlands: University of Twente, 2005. |
68 |
MCKEEN T , PUGSLEY T S . Simulation of cold flow FCC stripper hydrodynamics at small scale using computational fluid dynamics[J]. International Journal of Chemical Reactor Engineering, 2003, 1(1). DOI: org/10.2202/1542-6580.1034.
DOI URL |
69 | DAS S , PUGSLEY T , DELATOUR R . Three‐dimensional CFD model of the deaeration rate of FCC particles[J]. AIChE Journal, 2006, 52(7): 2391-2400. |
70 | LI T , POUGATCH K , SALCUDEAN M , et al . Numerical simulation of horizontal jet penetration in a three-dimensional fluidized bed[J]. Powder Technology, 2008, 184(1): 89-99. |
71 | ARASTOOPOUR H , GIDASPOW D . Analysis of IGT pneumatic conveying data and fast fluidization using a thermohydrodynamic model[J]. Powder Technology, 1979, 22(1): 77-87. |
72 | HOEF M A V D , KUIPERS J A M . Two-fluid modeling of Geldart A particles in gas-fluidized beds[J]. Particuology, 2008, 6(6): 540-548. |
73 | ZOU B , LI H , XIA Y , et al . Cluster structure in a circulating fluidized bed[J]. Powder technology, 1994, 78(2): 173-178. |
74 | SHUYAN W , ZHIHENG S , HUILIN L , et al . Numerical predictions of flow behavior and cluster size of particles in riser with particle rotation model and cluster-based approach[J]. Chemical Engineering Science, 2008, 63(16): 4116-4125. |
75 | MANYELE S V , PÄRSSINEN J H , ZHU J X . Characterizing particle aggregates in a high-density and high-flux CFB riser[J]. Chemical Engineering Journal, 2002, 88(1): 151-161. |
76 | KARIMIPOUR S , MOSTOUFI N , SOTUDEH-GHAREBAGH R . Modeling the hydrodynamics of downers by cluster-based approach[J]. Industrial & Engineering Chemistry Research, 2006, 45(21): 7204-7209. |
77 | NING Y , WEI W , WEI G , et al . Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5548-5561. |
78 | JENKINS J T , COWIN S C . Theories for flowing granular materials[C]//Mechanics Applied to the Transport of Bulk Materials. 1979. |
79 | GIDASPOW D . Multiphase Flow and Fluidization[J]. Continuum & Kinetic Theory Description, 1994, 95: 1-29. |
80 | SAVAGE S B . Analyses of slow high-concentration flows of granular materials[J]. Journal of Fluid Mechanics, 1998, 377: 1-26. |
[1] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[2] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[3] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[4] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[9] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[10] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[11] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[12] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[13] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[14] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[15] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |