化工进展 ›› 2019, Vol. 38 ›› Issue (01): 365-381.DOI: 10.16085/j.issn.1000-6613.2018-1134
李猛1,2(),姚宇健1,2,张轩1,2(),王连军1,2()
收稿日期:
2018-05-31
修回日期:
2018-10-09
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
张轩,王连军
作者简介:
李猛(1990—),男,博士研究生,从事分离膜的研究。E-mail: <email>Lemon_go8@163.com</email>。|张轩,副教授,博士生导师,研究方向为高分子复合膜的分子设计及应用。E-mail:<email>xuanzhang@njust.edu.cn</email>|王连军,教授,博士生导师,研究方向为膜分离技术在水处理方面的应用。E-mail:<email>wanglj@njust.edu.cn</email>
基金资助:
Meng LI1,2(),Yujian YAO1,2,Xuan ZHANG1,2(),Lianjun WANG1,2()
Received:
2018-05-31
Revised:
2018-10-09
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xuan ZHANG,Lianjun WANG
摘要:
以纳滤、反渗透、正渗透为代表的膜技术是目前高端水回用和海水淡化领域的主要技术,但是能源消耗高、分离效率低以及防污抗菌性差等已成为制约膜技术全面应用的主要因素。本文以薄层复合膜为讨论对象,以纳米材料对膜结构和性能的影响为主线,详细介绍了不同类型纳米材料的种类及选取原则、纳米材料的掺杂方式以及掺杂过程中可能遇到的主要问题及解决方法。指出薄层复合膜的纳米改性不仅可以优化膜结构及其物理化学性质(如亲水性、孔隙率、电荷密度、热和机械稳定性),还可以赋予膜某些特定的功能(如抗菌、光催化或吸附能力),从而满足特定的水处理应用需求。最后指出克服纳米材料团聚、解决分散性及相容性的问题是开发新一代高性能分离膜未来的主要研究方向。
中图分类号:
李猛, 姚宇健, 张轩, 王连军. 薄层复合膜的纳米改性:设计、制备及应用[J]. 化工进展, 2019, 38(01): 365-381.
Meng LI, Yujian YAO, Xuan ZHANG, Lianjun WANG. Nanomaterials for enhancing thin-film composite: design, fabrication, and application[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 365-381.
纳米材料 | 掺杂层 | 制备方法 | 性能表现 | 文献 |
---|---|---|---|---|
Ag NPs | PA活性层 | 界面聚合 | 通量及盐截留变化不大, 抗菌性提高 | [90] |
Ag NPs | PA活性层 | 界面聚合 | 膜表面亲水性增强, 膜通量及抗菌性提高, 盐截留率基本不变 | [45] |
SMW CNTs | PA活性层 | 界面聚合 | TFN-0.01%膜的纯水渗透系数高达13.2L/(m2·h·bar), 是原始TFC膜的1.6倍, 并且对硫酸钠的截留率达到96.8%; 此外,以BSA作为特征污染物, 改性膜的FRR达到91.2%。高于TFC膜(82%), 具有良好的抗污染性能 | [62] |
ZIF-8/GO | PA活性层 | 界面聚合 | 通量提高52%, 盐截留几乎不变。具有较好的抗菌性, 对大肠杆菌灭菌性达到84.4% | [95] |
HNTs | PA活性层 | 界面聚合 | 抗污性提高。以BSA作为特征污染物, 改性膜的FRR>96% | [106] |
GODs | PA活性层 | 界面聚合 | 膜表面亲水性增强,改性膜通量是普通膜的6.8倍。以BSA作为特征污染物,改性膜的水通量下降率(DRt)为24.7%, FRR为91.9%, 抗污性明显增强 | [107] |
TiO2@GO | PA活性层 | 界面聚合 | 亲水性增强;在BSA污染下, 最优改性膜DRt为24%, FRR>95% | [108] |
GO-ODA | PA活性层 | 界面聚合 | 纯水渗透系数8.3L/(m2·h·bar)。耐氯性: 3000μL/L NaClO, pH=8, 3h, 改性后的TFC对硫酸钠的截留仍保持在90%以上 | [109] |
GO | PA活性层 | 界面聚合 | 膜表面粗糙度下降, 亲水性及水通量提升。耐氯性: 2000μL/L, pH=7, 24h, 改性后的膜对氯化钠截留基本不变, 99.2% | [110] |
rGO/TiO2 | PA活性层 | 界面聚合 | 亲水性、荷负电性增强; 抗污性增强,DRt仅为25%。耐氯性: 2000mg/L NaClO, pH=4, 改性后的RO膜对氯化钠的截留率仅降低3%,而原始膜则降低了30% | [111] |
GO | PA活性层表面 | 表面沉积 | 抗菌性明显增强, 对大肠杆菌的灭菌率达到64.5% | [94] |
GO | PA活性层表面 | 表面沉积 | 耐氯性: 6000μL/L, pH=11, 2h后氯化钠截留从95.3%降到91.6%; 16h后氯化钠截留降到75% | [112] |
GO | PA活性层表面 | 层层组装 | 膜表面亲水性增强, 粗糙度降低,抗污耐氯性能增强 | [70] |
GO/Ag | PA活性层表面 | 化学接枝 | 膜表面亲水性增强, 水接触角小于25°; 对大肠杆菌的灭活率超过95% | [113] |
SCNTs | PA活性层表面 | 化学接枝 | 抗菌性能明显增强, 对大肠杆菌灭菌率超过60% | [114] |
Ag NPs | PA活性层表面 | 化学接枝 | 通量、盐截留几乎不变, 抗菌性明显增强 | [15] |
GO | PSF支撑层 | 相转化 | GO最佳掺量0.25%(质量分数)时, PSF支撑层S值降低, 仅为191μm | [115] |
CN/rGO | PES支撑层 | 相转化 | CN/rGO最佳掺量0.5%(质量分数)时, PES支撑层S值降低到163μm, J w比未改性膜提升20% | [116] |
TiO2 | PSF支撑层 | 相转化 | 改性后PSF支撑层亲水性、孔隙率增加。掺量为1%时, S值最小,为260μm, 正渗透性能提升。但高掺量的情况下(0.75%,1%)膜的J s上升严重 | [103] |
MOFs | PAN支撑层 | 相转化 | 多种MOF材料添加到PAN支撑层中均增大了支撑层的孔隙率, 其中PMSC300最为明显, 其S值降为190μm左右 | [117] |
HTNs | PSF支撑层 | 相转化 | 支撑层孔隙率、亲水性明显增加, S值为370μm | [118] |
表1 纳米改性薄层复合膜材料的综合性能汇总
纳米材料 | 掺杂层 | 制备方法 | 性能表现 | 文献 |
---|---|---|---|---|
Ag NPs | PA活性层 | 界面聚合 | 通量及盐截留变化不大, 抗菌性提高 | [90] |
Ag NPs | PA活性层 | 界面聚合 | 膜表面亲水性增强, 膜通量及抗菌性提高, 盐截留率基本不变 | [45] |
SMW CNTs | PA活性层 | 界面聚合 | TFN-0.01%膜的纯水渗透系数高达13.2L/(m2·h·bar), 是原始TFC膜的1.6倍, 并且对硫酸钠的截留率达到96.8%; 此外,以BSA作为特征污染物, 改性膜的FRR达到91.2%。高于TFC膜(82%), 具有良好的抗污染性能 | [62] |
ZIF-8/GO | PA活性层 | 界面聚合 | 通量提高52%, 盐截留几乎不变。具有较好的抗菌性, 对大肠杆菌灭菌性达到84.4% | [95] |
HNTs | PA活性层 | 界面聚合 | 抗污性提高。以BSA作为特征污染物, 改性膜的FRR>96% | [106] |
GODs | PA活性层 | 界面聚合 | 膜表面亲水性增强,改性膜通量是普通膜的6.8倍。以BSA作为特征污染物,改性膜的水通量下降率(DRt)为24.7%, FRR为91.9%, 抗污性明显增强 | [107] |
TiO2@GO | PA活性层 | 界面聚合 | 亲水性增强;在BSA污染下, 最优改性膜DRt为24%, FRR>95% | [108] |
GO-ODA | PA活性层 | 界面聚合 | 纯水渗透系数8.3L/(m2·h·bar)。耐氯性: 3000μL/L NaClO, pH=8, 3h, 改性后的TFC对硫酸钠的截留仍保持在90%以上 | [109] |
GO | PA活性层 | 界面聚合 | 膜表面粗糙度下降, 亲水性及水通量提升。耐氯性: 2000μL/L, pH=7, 24h, 改性后的膜对氯化钠截留基本不变, 99.2% | [110] |
rGO/TiO2 | PA活性层 | 界面聚合 | 亲水性、荷负电性增强; 抗污性增强,DRt仅为25%。耐氯性: 2000mg/L NaClO, pH=4, 改性后的RO膜对氯化钠的截留率仅降低3%,而原始膜则降低了30% | [111] |
GO | PA活性层表面 | 表面沉积 | 抗菌性明显增强, 对大肠杆菌的灭菌率达到64.5% | [94] |
GO | PA活性层表面 | 表面沉积 | 耐氯性: 6000μL/L, pH=11, 2h后氯化钠截留从95.3%降到91.6%; 16h后氯化钠截留降到75% | [112] |
GO | PA活性层表面 | 层层组装 | 膜表面亲水性增强, 粗糙度降低,抗污耐氯性能增强 | [70] |
GO/Ag | PA活性层表面 | 化学接枝 | 膜表面亲水性增强, 水接触角小于25°; 对大肠杆菌的灭活率超过95% | [113] |
SCNTs | PA活性层表面 | 化学接枝 | 抗菌性能明显增强, 对大肠杆菌灭菌率超过60% | [114] |
Ag NPs | PA活性层表面 | 化学接枝 | 通量、盐截留几乎不变, 抗菌性明显增强 | [15] |
GO | PSF支撑层 | 相转化 | GO最佳掺量0.25%(质量分数)时, PSF支撑层S值降低, 仅为191μm | [115] |
CN/rGO | PES支撑层 | 相转化 | CN/rGO最佳掺量0.5%(质量分数)时, PES支撑层S值降低到163μm, J w比未改性膜提升20% | [116] |
TiO2 | PSF支撑层 | 相转化 | 改性后PSF支撑层亲水性、孔隙率增加。掺量为1%时, S值最小,为260μm, 正渗透性能提升。但高掺量的情况下(0.75%,1%)膜的J s上升严重 | [103] |
MOFs | PAN支撑层 | 相转化 | 多种MOF材料添加到PAN支撑层中均增大了支撑层的孔隙率, 其中PMSC300最为明显, 其S值降为190μm左右 | [117] |
HTNs | PSF支撑层 | 相转化 | 支撑层孔隙率、亲水性明显增加, S值为370μm | [118] |
1 | RAVANCHI M T , KAGHAZCHI T , KARGARI A . Application of membrane separation processes in petrochemical industry: a review[J]. Desalination, 2009, 235(1): 199-244. |
2 | LAU W J , ISMAIL A F , MISDAN N , et al . A recent progress in thin film composite membrane: a review[J]. Desalination, 2012, 287: 190-199. |
3 | ZHAO H Y . Study on the preparation and structure-function relationship of mixed-matrix reverse osmosis membrane incorporated with carbon nanomaterials[D]. Hangzhou: Zhejiang University, 2015. |
4 | LI Y , QIAN W J , GAO C J , et al . Recent developments in nanofiltration membranes based on nanomaterials[J]. Chin.J. Chem Eng., 2017, 25: 1639-1652. |
5 | FANE A G , WANF R , HU M X . Synthetic membranes for water purification: status and future[J]. Angew. Chem. Int. Ed., 2015,54: 3368-3386. |
6 | SHIN D H , KIM N , LEE Y T , et al . Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance[J]. J. Membr. Sci., 2011, 376: 302-311. |
7 | MAUTER S M , ZUCKER I , ELIMELECH M , et al . The role of nanotechnology in tackling global water challenges[J]. Nature Sustainability, 2018, 1: 166-175. |
8 | PENDERGAST M M , HOEK E M V . A review of water treatment membrane nanotechnologies[J]. Energy Environ. Sci., 2011, 4: 1946-1971. |
9 | LAU W , GRAY S , MATSUURA T , et al . A review on polyamidethin film nanocomposite (TFN) membranes: history, applications, challenges and approaches[J]. Water. Res., 2015, 80: 306-324. |
10 | DONG H , ZHANG L , CHEN H L , et al . Mixed-matrix membrane for water treatment: materials, synthesis and properties[J]. Progress in Chemistry, 2014, 26(12): 2007-2018. |
11 | FATHIZADETH M , AROUJALIAN A , RAISI A . Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process[J]. J. Membr. Sci., 2011, 375: 88-95. |
12 | ZHU B , ZOU L D , DOHERTY C M , et al . Investigation of the effects of ion and water interaction on structure and chemistry of silicalite MFI type zeolite for its potential use as a seawater desalination membrane[J]. J. Mater. Chem., 2010, 20: 4675-4683. |
13 | HUANG H , QU X , JI X , et al . Acid and multivalent ion resistance of thin film nanocomposite RO membranes loaded with silicalite-l nanozeolites[J]. Mater. Chem. A., 2013, 1: 11343-11349. |
14 | LIU Y , WANG F , YANG X . Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films[J]. Micropor. Mesopor. Mat., 2008, 114: 431-439. |
15 | YIN J , YANG Y , HU Z Q , et al . Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling[J]. J. Membr. Sci., 2013, 441: 73-82. |
16 | BAE T H , KIM I C , TAK T M . Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes[J]. J. Membr. Sci., 2006, 275: 1-5. |
17 | NAGUIB M , MASHTALIR O , CARLE J , et al . Two-dimensional transition metal carbides[J]. Acs. Nano., 2012, 6: 1322-1331. |
18 | BARSOUM M W , RADOVIC M . Mechanical properties of the MAX phases[J]. Encyclopedia of Materials: Science and Technology, 2004, 160(s1):1-16. |
19 | LUKASTSKAYA M R . Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341: 1502-1505. |
20 | XU G R , WANG J N , LI C J . Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations[J]. Desalination, 2013, 328: 83-100. |
21 | GEIM A K , NOVOSELOV K S . The rise of graphene[J].Nat.Mater., 2007, 6(3): 183-191. |
22 | HOLT J K . Carbon nanotubes and nanofluidic transport[J]. Adv. Mater., 2009, 21: 3542-3550. |
23 | XING Y , LI L , CHUSUEI C C , et al . Sonochemical oxidation of multiwalled carbon nanotubes[J]. Langmuir, 2005, 21(9): 4185-4190. |
24 | XUE S M , XU Z L , TANG Y J , et al . Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs)[J]. ACS Appl. Mater. Interfaces, 2016, 8: 19135-19144. |
25 | HOLZINGER M , VOSTROWSKY O , HIRSCH A , et al . Sidewall functionalization of carbon nanotubes[J].Angew. Chem. Int. Edit., 2001, 40(21): 4002-4005. |
26 | SUN Z , PINT C L . Towards hybrid superlattices in graphene[J]. Nat. Commun., 2011, 2: 559. |
27 | MU Q , LIU W , XING Y , et al . Protein binding by functionalized multiwalled carbon nanotubes is governed by the surface chemistry of both parties and the nanotube diameter[J].J. Phys Chem. C.,2016, 112(9): 3300-3307. |
28 | ZHANG D , SHI L , FANG J , et al . Preparation and modification of carbon nanotubes[J]. Mater. Lett., 2005, 59(29/30): 4044-4047. |
29 | GEORGAKILAS V , OTYEPKA M , BOURLINOS A B , et al . Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications[J]. Chem. Rev., 2012, 112(11): 6156-6214. |
30 | LU G , MAO S , PARK S , et al . Facile, noncovalent decoration of graphene oxide sheets with nanocrystals[J]. Nano Res., 2009, 2(3): 192-200. |
31 | MAJUMDER M , CHOPRA N , ANDREWS R , et al . Nanoscale hydrodynamics: enhanced flow in carbon nanotubes[J]. Nature, 2005, 438(7064): 44. |
32 | HUMMER G , RASAIAH J C , NOWORYTA J P . Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. |
33 | CORRY B . Water and ion transport through functionalised carbon nanotubes: implications for desalination technology[J].Energy Environ. Sci., 2011, 4(3): 751-759. |
34 | SUK M E , ALUM N R . Water transport through ultra thin graphene[J]. Phys. Chem. Lett., 2010, 1(10): 1590-1594. |
35 | NAIR R R , WU H A , JAYARAM P N , et al . Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
36 | SUMIDA K , ROGOW D L , MASON J A , et a1 . Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev., 2011, 112(2): 724-781. |
37 | FURUKAWA H , KO N , GO Y B , et a1 . Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329(5990): 424-428. |
38 | WANG Z , COHEN S M . Postsynthetic modification of metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1315-1329. |
39 | TANABE K K , COHEN S M . Postsynthetic modification of metal-organic frameworks—A progress report[J]. Chem. Soc. Rev., 2011, 40(2): 498-519. |
40 | LI J R , KUPPLER R J , ZHOU H C . Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1477-1504. |
41 | KITAGAWA S , KITAURA R , NORO S . Functional porous coordination polymers[J]. Angew. Chem. Im. Ed., 2004, 43(18): 2334-2375. |
42 | LI M , ZHANG X , ELIMELECH M , et al . A self-standing, support-free membrane for forward osmosis with no internal concentration polarization[J]. Environ. Sci. Technol. Lett., 2018, 5: 266-271. |
43 | YIN J , DENG B . Polymer-matrix nanocomposite membranes for water treatment[J]. J. Membr. Sci., 2015, 479: 256-275. |
44 | PENDERGAST M M , GHOSH A K , HOCK E M V . Separation performance and interfacial properties of nanocomposite reverse osmosis membranes[J]. Desalination, 2013, 308: 180-185. |
45 | KIM E S , HWANG G , EL-DIN M G , et al . Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment[J]. J. Membr. Sci., 2012, 394: 37-48. |
46 | CHEN G , LIU R X , SHON H K , et al . Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater[J]. Desalination, 2017, 405: 76-84. |
47 | MA N, WEI J , QI S R , et al . Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes[J]. J. Membr. Sci., 2013, 441: 54-62. |
48 | JEONG B H , HOEK E M V , YAN Y S , et al . Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes[J].J. Membr. Sci., 2007, 294(1/2): 1-7. |
49 | FREGER V . Kinetics of film formation by interfacial polycondensation[J]. Langmuir, 2005, 21: 1884-1894. |
50 | NADLER R , SREBNIK S . Molecular simulation of polyamide synthesis by interfacial polymerization[J]. J. Membr. Sci., 2008, 315: 100-105. |
51 | FREGER V . Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study[J]. Environ. Sci. Technol., 2004, 38(11): 3168-3175. |
52 | PEYRAVI M , JAHANSHAHI M , RAHIMPOUR A , et al . Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration[J]. Chem. Eng. J., 2014, 241: 155-166. |
53 | LI X S , WANG R , WICAKSANA F , et al . Preparation of high performance nanofiltration (NF) membranes incorporated with aquaporin Z[J]. J. Membr. Sci., 2014, 450: 181-188. |
54 | YIN J , KIM E S , YANG J , et al . Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification[J]. J. Membr Sci., 2012, 423/424: 238-246. |
55 | YANG Z , WU Y C , GAO H , et al . A novel thin-film nano-templated composite membrane with in situ silver nanoparticles loading: separation performance enhancement and implications[J]. J. Membr. Sci., 2017, 544: 351-358. |
56 | WANG A N . Preparation and study of polyamide thin composite reverse osmosis membrane filled with modified Silicalite-1[D]. Wuxi: Jiangnan University, 2012. |
57 | WU H Q , TANG B B , WU P Y . Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles[J]. J. Membr. Sci., 2013, 428: 341-348. |
58 | RAJAEIAN B , RAHIMPOUR A , TADE M O , et al . Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles[J]. Desalination, 2013, 313: 176-188. |
59 | SHEN J N , YU C C , RUAN H M , et al . Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization[J]. J. Membr. Sci., 2013, 442: 18-26. |
60 | ZHAO H , QIU S , WU L , et al . Improving the performance of polyarnide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes[J]. J. Membr. Sci., 2014, 450: 249-256. |
61 | ZHANG L , SHI G Z , QIU S , et al . Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes[J]. Desalin. Water Treat., 2011, 34(1-3): 19-24. |
62 | ZHENG J F , LI M , YU K , et al . Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property[J]. J. Membr. Sci., 2017, 524: 344-353. |
63 | ZHAO F Y , JI Y L , WENG X D , et al . High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes[J]. ACS Appl. Mater. Interfaces, 2016, 8(10): 6693-6700. |
64 | BAE T H , TAK T M . Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system[J]. J. Membr. Sci., 2005, 266: 1-5. |
65 | BAE T H , KIM I C , TAK T M . Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes[J]. J. Membr. Sci., 2006, 275: 1-5. |
66 | MANSOURPANAH Y , MADAENI S S , RAHIMPOUR A , et al . Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability[J]. J. Membr. Sci., 2009, 330: 297-306. |
67 | KWAK S Y , KIM S H , KIM S S . Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling.1.Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane[J]. Environ. Sci. Technol., 2001, 35: 2388-2394. |
68 | KIM S H , KWAK S Y , SOHN B H , et al . Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem[J]. J. Membr. Sci., 2003, 211: 157-165. |
69 | MADAENI S S , GHAEMI N . Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation[J]. J. Membr. Sci., 2007, 303: 221-233. |
70 | CHOI W S , CHOI J K , BANG J N , et al . Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications[J]. ACS Appl. Mater. Interfaces, 2013, 5: 12510-12519. |
71 | HU M , MI B X . Enabling graphene oxide nanosheets as water separation membranes[J]. Environ. Sci. Technol., 2013, 47: 3715-3723. |
72 | PINAR C D , MARY L L . Nanoporous materials in polymeric membranes for desalination[J]. Curr. Opin. Chem. Eng., 2018, 20: 19-27. |
73 | ROY S , NTIM S A , MITRA S , et al . Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites[J].J. Membr Sci., 2011, 375(1): 81-87. |
74 | CHAN W F , MARAND E , MARTIN S M . Novel zwitterion functionalized carbon nanotube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance[J]. J. Membr. Sci., 2016, 509: 125-137. |
75 | JOSHI R K , CARBONE P , WANG F C , et al . Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
76 | XU Y , GAO X , WANG X , et al . Highly and stably water permeable thin film nanocomposite membranes doped with MIL-101(Cr) nanoparticles for reverse osmosis application[J]. Materials , 2006, 9(11): 1-14. |
77 | MA D C, PEH S B , HAN G , et al . Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection[J]. ACS Appl. Mater. Interfaces, 2017, 9: 7523-7534. |
78 | SORRIBAS S , GORGOJO P , TELLEZ C , et al . High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J].. J.Am Chem Soc., 2013, 135(40): 15201-15208. |
79 | LI Q , WANG Y H , SONG J , et al . Influence of silica nanospheres on the separation performance of thin film composite poly(piperazine-amide) nanofiltration membranes[J]. Appl. Surf. Sci., 2015, 324: 757-764. |
80 | YIN J , ZHU G C , DENG B L . Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification[J]. Desalination, 2016, 379: 93-101. |
81 | BANO S , MAHMOOD A , KIM S J , et al . Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties[J]. J Mater. Chem. A., 2015, 3: 2065-2071. |
82 | WEN P , CHEN Y B , HU X Y , et al . Polyamide thin film composite nanofiltration membrane modified with acyl chlorided graphene oxide[J]. J. Membr. Sci., 2017, 535: 208-220. |
83 | ZARRABI H , YEKAVALANGI M E , VATANPOUR V , et al . Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube[J]. Desalination, 2016, 394: 83-90. |
84 | HAN Y , JIANG Y Q , GAO C . High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes[J]. ACS Appl. Mater. Interfaces, 2015, 7: 8147-8155. |
85 | ZHU J Y , QIN L J , ULIANA A , et al . Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration[J]. ACS Appl. Mater. Interfaces, 2017, 9:1975-1986. |
86 | RANA D , MATSUURA T . Surface modifications for antifouling membranes[J]. Chem. Rev., 2010, 110: 2448-2471. |
87 | KIM E S , DENG B . Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications[J]. J. Membr. Sci., 2011, 375: 46-54. |
88 | PRANCOIS F , NEJATI S , ELIMELECH M , et al . Antimicrobial properties of graphene oxide nanosheets: why size matters?[J]. ACS Nano, 2015, 9 (7): 7226-7236. |
89 | MORITZ M , GESZKE-MORITZ M . The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chem. Eng. J., 2013, 228: 596-613. |
90 | LEE S Y , KIM H J , PATEL R , et al . Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties[J]. Polym. Adv. Technol., 2007, 18: 562-568. |
91 | RANA D , KIM Y , MATSUURA T , et al . Development of antifouling thin-film-composite membranes for seawater desalination[J]. J. Membr. Sci., 2011, 367: 110-118. |
92 | KIM H J , BAEK Y , CHOI K , et al . The improvement of antibiofouling properties of a reverse osmosis membrane by oxidized CNTs[J]. RSC Advances, 2014, 4(62): 32802-32810. |
93 | ZHENG J F , LI M , ZHANG X , et al . Zwitterionic carbon nanotube assisted thin-film nanocomposite membranes with excellent efficiency for separation of mono/divalent ions from brackish water[J]. J. Mater Chem. A., 2017, 5: 13730-13739. |
94 | PERREAULT F , TOUSLEY M E , ELIMELECH M . Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets[J]. Environ. Sci. Technol. Lett., 2014, 1:71-76. |
95 | WANG J , WANG Y M , ZHANG Y T , et al . Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance[J]. ACS Appl. Mater. Interfaces, 2016, 8: 25508-25519. |
96 | WATTS P C P , FEARON P K , HSU W K , et al . Carbon nanotubes as polymer antioxidants[J].J. Mater Chem., 2003, 13(3): 491-495. |
97 | YUAN B H , BAO C L , SONG L , et al . Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties[J]. Chem. Eng. J., 2014, 237: 411-420. |
98 | SHI X M , JIANG B B , WANG J D , et al . Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene[J]. Carbon, 2012, 50(3): 1005-1013. |
99 | PARK J , CHOI W , KIM S H , et al . Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes[J]. Desalin. Water Treat., 2010, 15(1/2/3): 198- 204. |
100 | KIM H J , LIM M Y , JUNG K H , et al . High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and grapheme oxides[J]. J. Mater Chem. A., 2015, 3(13): 6798-6809. |
101 | WANG Y Q , OU R W , GE Q Q , et al . Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane[J]. Desalination, 2013, 330: 70-78. |
102 | EMADZADEH D , LAU W J , ISMAIL A F . Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection[J]. Desalination, 2013, 330: 90-99. |
103 | EMADZADEH D , LAU W J , ISMAIL A F . A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination[J]. Chem. Eng. J., 2014, 237: 70-80. |
104 | EMADZADEH D , LAU W J , ISMAIL A F , et al . Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization[J]. J. Membr. Sci., 2014, 449: 74-85. |
105 | WANG Y Q , OU R W , WANG H T , et al . Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane[J]. J. Membr. Sci., 2015, 475: 281-289. |
106 | GHANBARI M , EMADZEDEH D , LAU W J , et al . Synthesis and characterization of novel thin film nanocomposite(TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination[J]. Desalination, 2015, 358:33-41. |
107 | BI R , ZHANG Q , ZHANG R N , et al . Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property[J]. J. Membr. Sci., 2018, 553: 17-24. |
108 | WANG J , WANG Y M , ZHU J Y , et al . Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance[J]. J. Membr. Sci., 2017, 533: 279-288. |
109 | XUE S M , JI C H , XU Z L , et al . Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer[J]. J. Membr. Sci., 2018, 545:185-195. |
110 | CHAE H R , LEE J , LEE C H , et al . Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance[J]. J. Membr. Sci., 2015, 483:128-135. |
111 | SAFARPOUR M , KHATAEE A , VATANPOUR V . Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. J. Membr. Sci., 2015, 489: 43-54. |
112 | SHAO F F , DONG L F , DONG H Z , et al . Graphene oxide modified polyamide reverse osmosis membranes with enhanced chlorine resistance[J] J. Membr. Sci., 2017, 525: 9-17. |
113 | SOROUSH A , MA W, SILVINO, et al . Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets[J]. Environ. Sci-Nano, 2015, 2: 395-405. |
114 | TIRAFERRI A , VECITIS C D , ELIMELECH M . Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties[J]. ACS Appl. Mater. Interfaces, 2011, 3: 2869-2877. |
115 | PARK M J , PHUNTSHO S , HE T . Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. J. Membr. Sci., 2015, 493: 496-507. |
116 | SAFARPOUR M , KHATAEE A , VATANPOUR V . Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance[J]. J. Membr. Sci. , 2015, 489: 43-54. |
117 | LEE J Y , SHE Q H , HUO F W , et al . Metal-organic frame-work-based porous matrix membranes for improving mass transfer in forward osmosis membranes[J]. J. Membr. Sci., 2015, 492: 392-399. |
118 | GHANBARI M , EMADZEDEH D , LAU W J , et al . Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates[J]. Desalination, 2016, 377:152-162. |
[1] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[2] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[3] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[4] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[5] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[6] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[9] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[10] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[11] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[12] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[13] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[14] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[15] | 汪嘉欣, 潘勇, 熊欣怡, 万晓月, 王建超. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |