化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1147-1159.DOI: 10.16085/j.issn.1000-6613.2018-1095

• 特约评述 • 上一篇    下一篇

石油沥青质的微观结构分析和轻质化

盛强1(),王刚1(),金楠1,2,张淇源1,高成地3,高金森1   

  1. 1. 中国石油大学(北京)化学工程学院,重质油国家重点实验室,北京 102249
    2. 烟台大学化学化工学院,山东 烟台 264005
    3. 中国石油大学(北京)理学院,北京 102249
  • 收稿日期:2018-05-28 修回日期:2018-09-04 出版日期:2019-03-05 发布日期:2019-03-05
  • 通讯作者: 王刚
  • 作者简介:盛强(1986—),男,博士研究生,研究方向为重质油加工利用与清洁燃料生产。E-mail:shq0433@163.com。|王刚,教授,博士生导师,研究方向为重质油加工利用与清洁燃料生产。E-mail:wanggang@cup.edu.cn
  • 基金资助:
    国家重点研发计划(2017YFB0602504)

Petroleum asphaltene micro-structure analysis and lightening

Qiang SHENG1(),Gang WANG1(),Nan JIN1,2,Qi’yuan ZHANG1,Cheng’di GAO3,Jin’sen GAO1   

  1. 1. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
    2. College of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
    3. College of Science, China University of Petroleum, Beijing 102249, China
  • Received:2018-05-28 Revised:2018-09-04 Online:2019-03-05 Published:2019-03-05
  • Contact: Gang WANG

摘要:

通过总结和深化对石油沥青质微观结构及其轻质化工艺的认识,探索沥青质有效转化途径,为解决重质油加工过程中沥青质轻质化的难题提供思路。首先对沥青质微观结构的研究进展进行了总结,并通过分析沥青质基本单元片层结构和构成纳微缔合结构的相互作用力,推测构成沥青质纳微尺度结构的只有少数似晶缔合体,大部分为非晶缔合体。通过分析沥青质轻质化工艺发现热裂化和加氢转化工艺并未实现沥青质的轻质化,沥青质大多缩合生成了焦炭产物,虽然溶解作用使得沥青质在超临界水中有部分转化,但由于释放的活性氢数量有限,解决不了沥青质缩合问题,焦炭产率仍然很高。液相加氢转化利用活性氢自由基终止沥青质大分子自由基的链反应避免了生焦,实现了沥青质的有效轻质化。通过分析沥青质转化过程中胶体体系的稳定性,发现维持热裂化和加氢转化过程中重油胶体体系的稳定性较差,以沥青质为中心的胶束与分散介质之间的转化性能差异导致体系发生相分离而生成焦炭。液相加氢转化工艺中,由于新建立的胶体体系的分散介质保证了稳定的沥青质胶束的溶解能力,而为沥青质的有效转化提供了优良的反应环境。本文对沥青质的纳微缔合结构提出了新的观点,同时指出对非晶缔合体进行有效解构是沥青质液相加氢实现轻质化的关键。

关键词: 石油沥青质, 微观结构, 似晶缔合体, 非晶缔合体, 胶体稳定性, 液相加氢转化

Abstract:

This paper intended to summarize and deeply understand of the micro-structure and lightening of petroleum asphaltene, as well as exploring pathways for the effective conversion of asphaltene, and providing ideas to solve the problems which exist in asphaltene lightening in heavy oil processing. Firstly, the researches on asphaltene micro-structure was summarized. After analyzing the structure of the asphaltene unit sheet and the interaction existing in asphaltene nano-microscale structure, a new viewpoint that the asphaltene nano-microscale structure was composed of few crystallike associations and large number of amorphous associations was speculated. Secondly, by analyzing the asphaltene lightening process, it was found that the asphaltene lighting was not achieved in thermal cracking and hydroconversion processes, most of the asphaltene was condensed to form coke. Though solvation by supercritical water promoted parts of asphaltene to be converted to maltene, releasing less active hydrogen could not restrain the asphaltene condensation leading to high coke yield. While in liquid-phase hydroconversion process, the active hydrogen radicals were utilized for stopping the chain reaction of asphaltene macromolecular radicals, in return, coking from asphaltene was avoided and effective lightening asphaltene was achieved. Lastly, by analyzing the colloidal system stability during asphaltene conversion process, it showed that keeping stable of the colloidal system stability was difficult in thermal cracking and hydroconversion processes. The difference in conversion performance between the asphaltene-centered micelles and dispersion medium directly led to phase separation and coke formation. However, in liquid-phase hydro-conversion process, the dispersion medium of the newly established colloidal system owned a stable asphaltene micelles dissolving ability, which provided an optimal reaction environment for effective conversion asphaltene. In this work, a new viewpoint on the asphaltene nano-microscale structure and the amorphous disassociations was proposed to achieve asphaltene lightening in liquid-phase hydro-conversion process.

Key words: petroleum asphaltene, micro-structure, crystallike association, amorphous association, colloidal stability, liquid-phase hydroconversion

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn