化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1147-1159.DOI: 10.16085/j.issn.1000-6613.2018-1095
盛强1(),王刚1(),金楠1,2,张淇源1,高成地3,高金森1
收稿日期:
2018-05-28
修回日期:
2018-09-04
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
王刚
作者简介:
基金资助:
Qiang SHENG1(),Gang WANG1(),Nan JIN1,2,Qi’yuan ZHANG1,Cheng’di GAO3,Jin’sen GAO1
Received:
2018-05-28
Revised:
2018-09-04
Online:
2019-03-05
Published:
2019-03-05
Contact:
Gang WANG
摘要:
通过总结和深化对石油沥青质微观结构及其轻质化工艺的认识,探索沥青质有效转化途径,为解决重质油加工过程中沥青质轻质化的难题提供思路。首先对沥青质微观结构的研究进展进行了总结,并通过分析沥青质基本单元片层结构和构成纳微缔合结构的相互作用力,推测构成沥青质纳微尺度结构的只有少数似晶缔合体,大部分为非晶缔合体。通过分析沥青质轻质化工艺发现热裂化和加氢转化工艺并未实现沥青质的轻质化,沥青质大多缩合生成了焦炭产物,虽然溶解作用使得沥青质在超临界水中有部分转化,但由于释放的活性氢数量有限,解决不了沥青质缩合问题,焦炭产率仍然很高。液相加氢转化利用活性氢自由基终止沥青质大分子自由基的链反应避免了生焦,实现了沥青质的有效轻质化。通过分析沥青质转化过程中胶体体系的稳定性,发现维持热裂化和加氢转化过程中重油胶体体系的稳定性较差,以沥青质为中心的胶束与分散介质之间的转化性能差异导致体系发生相分离而生成焦炭。液相加氢转化工艺中,由于新建立的胶体体系的分散介质保证了稳定的沥青质胶束的溶解能力,而为沥青质的有效转化提供了优良的反应环境。本文对沥青质的纳微缔合结构提出了新的观点,同时指出对非晶缔合体进行有效解构是沥青质液相加氢实现轻质化的关键。
中图分类号:
盛强,王刚,金楠,张淇源,高成地,高金森. 石油沥青质的微观结构分析和轻质化[J]. 化工进展, 2019, 38(03): 1147-1159.
Qiang SHENG,Gang WANG,Nan JIN,Qi’yuan ZHANG,Cheng’di GAO,Jin’sen GAO. Petroleum asphaltene micro-structure analysis and lightening[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1147-1159.
1 | MULLINS O C . The modified Yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207. |
2 | COSTA L M D , STOYANOV S R , GUSAROV S , et al . Density functional theory investigation of the contributions of π–π stacking and hydrogen-bonding interactions to the aggregation of model asphaltene compounds[J]. Energy & Fuels, 2012, 26(5): 2727-2735. |
3 | 秦匡宗, 郭绍辉 . 石油沥青质[M]. 北京: 石油工业出版社, 2002. |
QIN Kuangzong , GUO Shaohui . Petroleum asphaltene[M]. Beijing:Petroleum Industry Press, 2002. | |
4 | 梁文杰 . 重质油化学[M]. 青岛: 石油大学出版社, 2000. |
LIANG Wenjie . Heavy oil chemistry[M]. Qingdao: China University of Petroleum Press, 2000. | |
5 | GROENZIN H , MULLINS O C . Asphaltene molecular size and structure[J]. The Journal of Physical Chemistry A, 1999, 103(50): 11237-11245. |
6 | WARGADALAM V J , NORINAGA K , IINO M . Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements[J]. Fuel, 2002, 81(11/12): 1403-1407. |
7 | BERGMANN U , GROENZIN H , MULLINS O C , et al . Carbon K-edge X-ray Raman spectroscopy supports simple, yet powerful description of aromatic hydrocarbons and asphaltenes[J]. Chemical Physics Letters, 2003, 369(1/2): 184-191. |
8 | SABBAH H , MORROW A L , POMERANTZ A E , et al . Evidence for island structures as the dominant architecture of asphaltenes[J]. Energy & Fuels, 2011, 25(4): 1597-1604. |
9 | KARIMI A , QIAN K , OLMSTEAD W N , et al . Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis[J]. Energy & Fuels, 2011, 25(8): 3581-3589. |
10 | ANDREWS A B , GUERRA R E , MULLINS O C , et al . Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy[J]. The Journal of Physical Chemistry A, 2006, 110(26): 8093-8097. |
11 | POMERANTZ A E , HAMMOND M R , MORROW A L , et al . Two-step laser mass spectrometry of asphaltenes[J]. Journal of the American Chemical Society, 2008, 130(23): 7216-7217. |
12 | POMERANTZ A E , HAMMOND M R , MORROW A L , et al . Asphaltene molecular-mass distribution determined by two-step laser mass spectrometry[J]. Energy & Fuels, 2008, 23(3): 1162-1168. |
13 | MCKENNA A M , MARSHALL A G , RODGERS R P . Heavy petroleum composition. 4. Asphaltene compositional space[J]. Energy & Fuels, 2013, 27(3): 1257-1267. |
14 | HORTAL A R , HURTADO P , MART NEZ-HAYA B , et al . Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments[J]. Energy & Fuels, 2007, 21(5): 2863-2868. |
15 | MILLER J , FISHER R , THIYAGARAJAN P , et al . Subfractionation and characterization of Mayan asphaltene[J]. Energy & Fuels, 1998, 12(6): 1290-8. |
16 | TREJO F , ANCHEYTA J . Characterization of asphaltene fractions from hydrotreated Maya crude oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(23): 7571-7579. |
17 | POVEDA J C , MOLINA D , MART NEZ H , et al . Molecular changes in asphaltenes within H2 plasma[J]. Energy & Fuels, 2014, 28(2): 735-744. |
18 | ALVAREZ-RAM REZ F , RUIZ-MORALES Y . Island versus archipelago architecture for asphaltenes: polycyclic aromatic hydrocarbon dimer theoretical studies[J]. Energy & Fuels, 2013, 27(4): 1791-1808. |
19 | BADRE S , GONCALVES C C , NORINAGA K , et al . Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen[J]. Fuel, 2006, 85(1): 1-11. |
20 | SCHNEIDER M H , ANDREWS A B , MITRA-KIRTLEY S , et al . Asphaltene molecular size by fluorescence correlation spectroscopy[J]. Energy & Fuels, 2007, 21(5): 2875-2882. |
21 | SCHULER B , MEYER G , PEÑA D , et al . Unraveling the molecular structures of asphaltenes by atomic force microscopy[J]. Journal of the American Chemical Society, 2015, 137(31): 9870-9876. |
22 | 王子军, 梁文杰 . 钌离子催化氧化法研究胜利减压渣油组分的化学结构[J]. 石油学报 (石油加工), 1997, 13(4): 1-9. |
WANG Zijun , LIANG Wenjie . Study on molecular structure of fractions in Shengli vacuum residue by ruthenium ions catalyzed oxidation[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1997, 13 (4): 1-9. | |
23 | 王子军, 阙国和 . 减压渣油中胶状沥青状物质的化学结构研究[J]. 石油学报 (石油加工), 1999, 15(6): 39-46. |
WANG Zijun , QUE Guohe . Investigation on chemical structure of resins and pentane asphaltene in vacuum residua[J]. Acta Petrolei Sinica(Petroleum Processing Section), 1999, 15 (6): 39-46. | |
24 | 朱军, 郭绍辉, 李术元 . 钌离子催化氧化研究石油沥青质芳香环系结构特征[J]. 燃料化学学报, 2002, 30(5): 433-437. |
ZHU Jun , GUO Shaohui , LI Shuyuan . Features of aromatic ring structure in petroleum asphaltene revealed by ruthenium ion catalyzed oxidation[J]. Journal of Fuel Chemistry and Technology, 2002, 30(5): 433-437. | |
25 | CALEMMA V , RAUSA R , D'ANTON P , et al . Characterization of asphaltenes molecular structure[J]. Energy & Fuels, 1998, 12(2): 422-428. |
26 | GRAY M R . Consistency of asphaltene chemical structures with pyrolysis and coking behavior[J]. Energy & Fuels, 2003, 17(6): 1566-1569. |
27 | PODGORSKI D C , CORILO Y E , NYADONG L , et al . Heavy petroleum composition. 5. Compositional and structural continuum of petroleum revealed[J]. Energy & Fuels, 2013, 27(3): 1268-1276. |
28 | STRAUSZ O P , SAFARIK I , LOWN E , et al . A critique of asphaltene fluorescence decay and depolarization-based claims about molecular weight and molecular architecture[J]. Energy & Fuels, 2008, 22(2): 1156-1166. |
29 | BORTON D , PINKSTON D S , HURT M R , et al . Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry[J]. Energy & Fuels, 2010, 24(10): 5548-5559. |
30 | GRAY M R , TYKWINSKI R R , STRYKER J M , et al . Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy & Fuels, 2011, 25(7): 3125-3134. |
31 | HOSSEINI‐DASTGERDI Z , TABATABAEI‐NEJAD S , KHODAPANAH E , et al . A comprehensive study on mechanism of formation and techniques to diagnose asphaltene structure; molecular and aggregates: a review[J]. Asia‐Pacific Journal of Chemical Engineering, 2015, 10(1): 1-14. |
32 | CHACON-PATINO M L , VESGA-MARTINEZ S J , BLANCO-TIRADO C , et al . Exploring occluded compounds and their interactions with asphaltene networks using high-resolution mass spectrometry[J]. Energy & Fuels, 2016, 30(6): 4550-4561. |
33 | DERAKHSHESH M , BERGMANN A , GRAY M R . Occlusion of polyaromatic compounds in asphaltene precipitates suggests porous nanoaggregates[J]. Energy & Fuels, 2012, 27(4): 1748-1751. |
34 | GAWRYS K L , BLANKENSHIP G A , KILPATRICK P K . On the distribution of chemical properties and aggregation of solubility fractions in asphaltenes[J]. Energy & Fuels, 2006, 20(2): 705-714. |
35 | GRAY M R , LE T , MCCAFFREY W C , et al . Coupling of mass transfer and reaction in coking of thin films of an Athabasca vacuum residue[J]. Industrial & Engineering Chemistry Research, 2001, 40(15): 3317-3324. |
36 | STRAUSZ O P , MOJELSKY T W , FARAJI F , et al . Additional structural details on Athabasca asphaltene and their ramifications[J]. Energy & Fuels, 1999, 13(2): 207-227. |
37 | RUEDA-VELÁSQUEZ R I , FREUND H , QIAN K , et al . Characterization of asphaltene building blocks by cracking under favorable hydrogenation conditions[J]. Energy & Fuels, 2012, 27(4): 1817-1829. |
38 | TANAKA R , SATO S , TAKANOHASHI T , et al . Analysis of the molecular weight distribution of petroleum asphaltenes using laser desorption-mass spectrometry[J]. Energy & Fuels, 2004, 18(5): 1405-1413. |
39 | ACEVEDO S , CASTRO A , NEGRIN J G , et al . Relations between asphaltene structures and their physical and chemical properties: The rosary-type structure[J]. Energy & Fuels, 2007, 21(4): 2165-2175. |
40 | KLEIN G C , KIM S, RODGERS R P , et al . Mass spectral analysis of asphaltenes. Ⅱ. Detailed compositional comparison of asphaltenes deposit to its crude oil counterpart for two geographically different crude oils by ESI FT-ICR MS[J]. Energy & Fuels, 2006, 20(5): 1973-1979. |
41 | RODGERS R P , MARSHALL A G . Petroleomics: Advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) [M]. Asphaltenes, Heavy Oils, and Petroleomics, Berlin: Springer, 2007: 63-93. |
42 | PEREIRA T M , VANINI G , OLIVEIRA E C , et al . An evaluation of the aromaticity of asphaltenes using atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry-APPI (±) FT-ICR MS[J]. Fuel, 2014, 118: 348-357. |
43 | PEREIRA T M , VANINI G , TOSE L V , et al . FT-ICR MS analysis of asphaltenes: asphaltenes go in, fullerenes come out[J]. Fuel, 2014, 131: 49-58. |
44 | LIAO Y , SHI Q , HSU C S, et al . Distribution of acids and nitrogen-containing compounds in biodegraded oils of the Liaohe Basin by negative ion ESI FT-ICR MS[J]. Organic Geochemistry, 2012, 47: 51-65. |
45 | MCKENNA A M , PURCELL J M , RODGERS R P , et al . Identification of vanadyl porphyrins in a heavy crude oil and raw asphaltene by atmospheric pressure photoionization Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry[J]. Energy & Fuels, 2009, 23(4): 2122-2128. |
46 | CHAC N-PATI O M L , ROWLAND S M , RODGERS R P . Advances in asphaltene petroleomics. Part 1: Asphaltenes are composed of abundant island and archipelago structural motifs[J]. Energy & Fuels, 2017, 31(12): 13509-13518. |
47 | ROGEL E . Simulation of interactions in asphaltene aggregates[J]. Energy & Fuels, 2000, 14(3): 566-574. |
48 | SPIECKER P M , GAWRYS K L , KILPATRICK P K . Aggregation and solubility behavior of asphaltenes and their subfractions[J]. Journal of Colloid and Interface Science, 2003, 267(1): 178-193. |
49 | TAKANOHASHI T , SATO S , TANAKA R . Molecular modeling of asphaltene aggregates and computer simulation of their relaxation behaviors; proceedings of the abstracts of the American Chemical Society, 2001[C]. Washington: Amer. Chemical Soc., 2001. |
50 | TAKANOHASHI T , SATO S , TANAKA R . Molecular dynamics simulation of structural relaxation of asphaltene aggregates[J]. Petroleum Science and Technology, 2003, 21(3/4): 491-505. |
51 | MOSCHOPEDIS S E , SPEIGHT J G . Investigation of hydrogen bonding by oxygen functions in Athabasca bitumen[J]. Fuel, 1976, 55(3): 187-192. |
52 | 刘必心, 龙军, 任强, 等 . 塔河沥青质超分子体系的初步探索[J]. 石油学报 (石油加工), 2017, 33(1): 16-24. |
LIU Bixin , LONG Jun , REN Qiang , et al . Preliminary exploration for supramolecular system of Tahe asphaltene[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(1): 16-24. | |
53 | ALHUMAIDAN F S , HAUSER A , RANA M S , et al . Changes in asphaltene structure during thermal cracking of residual oils: XRD study[J]. Fuel, 2015, 150: 558-564. |
54 | ANCHEYTA J , TREJO F , RANA M S . Asphaltenes: chemical transformation during hydroprocessing of heavy oils[M].Boca Raton: CRC Press, 2010. |
55 | ANDERSEN S I , JENSEN J O , SPEIGHT J G . X-ray diffraction of subfractions of petroleum asphaltenes[J]. Energy & Fuels, 2005, 19(6): 2371-2377. |
56 | TREJO F , ANCHEYTA J , MORGAN T , et al . Characterization of asphaltenes from hydrotreated products by SEC, LDMS, MALDI, NMR, and XRD[J]. Energy & Fuels, 2007, 21(4): 2121-2128. |
57 | 李能, 董明, 李龙, 等 . 石油沥青质化学结构模型研究进展[J]. 石油沥青, 2014, 28(3): 40-48. |
LI Neng , DONG Ming , LI Long , et al . Research advances of chemical structure model of petroleum asphaltenes[J]. Petroleum Asphalt, 2014, 28(3): 40-48. | |
58 | EYSSAUTIER J , LEVITZ P , ESPINAT D , et al . Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering[J]. The Journal of Physical Chemistry B, 2011, 115(21): 6827-6837. |
59 | ESPINAT D , FENISTEIN D , BARRE L , et al . Effects of temperature and pressure on asphaltenes agglomeration in toluene. A light, X-ray, and neutron scattering investigation[J]. Energy & Fuels, 2004, 18(5): 1243-1249. |
60 | SAVVIDIS T G , FENISTEIN D , BARR L , et al . Aggregated structure of flocculated asphaltenes[J]. AIChE Journal, 2001, 47(1): 206-211. |
61 | FENISTEIN D , BARRE L . Experimental measurement of the mass distribution of petroleum asphaltene aggregates using ultracentrifugation and small-angle X-ray scattering[J]. Fuel, 2001, 80(2): 283-287. |
62 | TANAKA R , HUNT J E , WINANS R E , et al . Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering[J]. Energy & Fuels, 2003, 17(1): 127-134. |
63 | TANAKA R , SATO E , HUNT J E , et al . Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering[J]. Energy & Fuels, 2004, 18(4): 1118-1125. |
64 | HEADEN T , BOEK E , JACKSON G , et al . Simulation of asphaltene aggregation through molecular dynamics: insights and limitations[J]. Energy & Fuels, 2017, 31(2): 1108-1125. |
65 | HUNTER C A , SANDERS J K . The nature of π-π interactions[J]. Journal of the American Chemical Society, 1990, 112(14): 5525-5534. |
66 | WOLF L . www.scs.illinois.edu/denmark/wp-content/uploads/gp/.../gm-2011-1_18.pdf, 2011. |
67 | MARTINEZ M T , BENITO A M , CALLEJAS M A . Thermal cracking of coal residues: kinetics of asphaltene decomposition[J]. Fuel, 1997, 76(9): 871-877. |
68 | WANG J , ANTHONY E J . A study of thermal-cracking behavior of asphaltenes[J]. Chemical Engineering Science, 2003, 58(1): 157-162. |
69 | YASAR M , TRAUTH D M , KLEIN M T . Asphaltene and resid pyrolysis. 2. The effect of reaction environment on pathways and selectivities[J]. Energy & Fuels, 2001, 15(3): 504-509. |
70 | AKMAZ S , GURKAYNAK M A , YASAR M . The effect of temperature on the molecular structure of Raman asphaltenes during pyrolysis[J]. Journal of Analytical & Applied Pyrolysis, 2012, 96: 139-145. |
71 | SAVAGE P E , KLEIN M T , KUKES S G . Asphaltene reaction pathways. 3. Effect of reaction environment[J]. Energy & Fuels, 1988, 2(5): 619-628. |
72 | SAVAGE P E , KLEIN M T , KUKES S G . Asphaltene reaction pathways. 1. Thermolysis[J]. Ind. Eng. Chem. Process Des. Dev., 1985, 24(4): 1169-1174. |
73 | BANERJEE D K , LAIDLER K J , NANDI B N , et al . Kinetic studies of coke formation in hydrocarbon fractions of heavy crudes[J]. Fuel, 1986, 65(4): 480-484. |
74 | 牛传峰, 戴立顺, 李大东 . 芳香性对渣油加氢反应的影响[J]. 石油炼制与化工, 2008, 39(6): 1-5. |
NIU Chuanfeng , DAI Lishun , LI Dadong . Effect of aromaticity on residue hydrotreating reactions[J]. Petroleum Processing and Petrochemicals, 2008, 39(6): 1-5. | |
75 | 牛传峰, 张瑞弛, 戴立顺, 等 . 渣油加氢——催化裂化双向组合技术 RICP[J]. 石油炼制与化工, 2002, 33(1): 27-29. |
NIU Chuanfeng , ZHANG Ruichi , DAI Lishun , et al . A new integration process of residue hydrotreating combined with catalytic cracking[J]. Petroleum Processing and Petrochemicals, 2002, 33(1): 27-29. | |
76 | TAYAKOUT M , FERREIRA C , ESPINAT D , et al . Diffusion of asphaltene molecules through the pore structure of hydroconversion catalysts[J]. Chemical Engineering Science, 2010, 65(5): 1571-1583. |
77 | ZHAO Y , LIN X , LI D . Catalytic hydrocracking of a bitumen-derived asphaltene over NiMo/γ‐Al2O3 at various temperatures[J]. Chem. Eng. Technol., 2015, 38(2): 297-303. |
78 | BARTHOLDY J , ANDERSEN S I . Changes in asphaltene stability during hydrotreating[J]. Energy & Fuels, 2000, 14(1): 52-55. |
79 | SEKI H , KUMATA F . Structural change of petroleum asphaltenes and resins by hydrodemetallization[J]. Energy & Fuels, 2000, 14(5): 980-985. |
80 | TRYTTEN L C , GRAY M R , SANFORD E C . Hydroprocessing of narrow-boiling gas oil fractions: dependence of reaction kinetics on molecular weight[J]. Industrial & Engineering Chemistry Research, 1990, 29(5): 725-730. |
81 | SAVAGE P E . Organic chemical reactions in supercritical water[J]. Chemical Reviews, 1999, 99(2): 603-622. |
82 | YAN B , WU J , XIE C , et al . Supercritical water gasification with Ni/ZrO2 catalyst for hydrogen production from model wastewater of polyethylene glycol[J]. The Journal of Supercritical Fluids, 2009, 50(2): 155-161. |
83 | CHENG Z-M , DING Y , ZHAO L-Q , et al . Effects of supercritical water in vacuum residue upgrading[J]. Energy & Fuels, 2009, 23(6): 3178-3183. |
84 | KOZHEVNIKOV I , NUZHDIN A , MARTYANOV O . Transformation of petroleum asphaltenes in supercritical water[J]. The Journal of Supercritical Fluids, 2010, 55(1): 217-222. |
85 | MORIMOTO M , SATO S , TAKANOHASHI T . Effect of water properties on the degradative extraction of asphaltene using supercritical water[J]. The Journal of Supercritical Fluids, 2012, 68: 113-116. |
86 | SATO T , ADSCHIRI T , ARAI K , et al . Upgrading of asphalt with and without partial oxidation in supercritical water[J]. Fuel, 2003, 82(10): 1231-1239. |
87 | WATANABE M , S-N KATO , ISHIZEKI S , et al . Heavy oil upgrading in the presence of high density water: basic study[J]. The Journal of Supercritical Fluids, 2010, 53(1/2/3): 48-52. |
88 | ZHAO L-Q , CHENG Z-M , DING Y , et al . Experimental study on vacuum residuum upgrading through pyrolysis in supercritical water[J]. Energy & Fuels, 2006, 20(5): 2067-2071. |
89 | HAN L , ZHANG R , BI J , et al . Pyrolysis of coal-tar asphaltene in supercritical water[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(2): 281-287. |
90 | LI N , YAN B , XIAO X M . Kinetic and reaction pathway of upgrading asphaltene in supercritical water[J]. Chemical Engineering Science, 2015, 134: 230-237. |
91 | LIU Q K , ZHU D Q , TAN X C , et al . Lumped reaction kinetic models for pyrolysis of heavy oil in the presence of supercritical water[J]. AIChE Journal, 2016, 62(1): 207-216. |
92 | ZHU D-Q , LIU Q-K , TAN X-C , et al . Structural characteristics of asphaltenes derived from condensation of maltenes in supercritical water[J]. Energy & Fuels, 2015, 29(12): 7807-7815. |
93 | 徐春明, 赵锁奇, 卢春喜, 等 . 重质油梯级分离新工艺的工程基础研究[J]. 化工学报, 2010, 61(9):2393-2400. |
XU Chunming , ZHAO Suoqi , LU Chunxi , et al . Engineering basics of heavy oil deep stage separating process[J]. CIESC Journal, 2010,61(9): 2393-2400. | |
94 | ZHANG Z G , GUO S , ZHAO S , et al . Alkyl side chains connected to aromatic units in Dagang vacuum residue and its supercritical fluid extraction and fractions (SFEFs)[J]. Energy & Fuels, 2008, 23(1): 374-385. |
95 | SHENG Q , WANG G , ZHANG Q , et al . Seven-lump kinetic model for non-catalytic hydrogenation of asphaltene[J]. Energy & Fuels, 2017, 31(5): 5037-5045. |
96 | JIN N , WANG G , HAN S , et al . Hydroconversion behavior of asphaltenes under liquid-phase hydrogenation conditions[J]. Energy & Fuels, 2016, 30(4): 2594-2603. |
97 | SHENG Q , WANG G , DUAN M , et al . Determination of the hydrogen-donating ability of industrial distillate narrow fractions[J]. Energy & Fuels, 2016, 30(12): 10314-10321. |
98 | SHENG Q , WANG G , ZHANG Q , et al . Kinetic model for liquid-phase liquefaction of asphaltene by hydrogenation with industrial distillate narrow fraction as hydrogen donor[J]. Fuel, 2017, 209(1): 54-61. |
99 | 张龙力, 杨国华, 张庆轩, 等 . 渣油胶体稳定性与热反应生焦性能的关系[J]. 石油化工高等学校学报, 2005, 18(1): 4-6. |
ZHANG Longli , YANG Guohua , ZHANG Qingxuan , et al . The relationships of residue colloidal stability and thermal reaction performance[J]. Journal of Petrochemical Universities, 2005, 18(1): 4-6. | |
100 | ZHANG L L , YANG G H , QUE G , et al . Colloidal stability variation of petroleum residue during thermal reaction[J]. Energy & Fuels, 2006, 20(5): 2008-2012. |
101 | WANG J , LI C , ZHANG L L , et al . Phase separation and colloidal stability change of Karamay residue oil during thermal reaction[J]. Energy & Fuels, 2009, 23(6): 3002-3007. |
102 | ZHANG L-L , MAO H-X , ZHANG G-D , et al . Relationships between electrical conductivity variation and coking characteristics of residue during thermal reaction through online equipment[J]. Energy & Fuels, 2016, 30(7): 5404-5410. |
103 | 张龙力, 张世杰, 杨国华, 等 . 常压渣油热反应过程中胶体的稳定性[J]. 石油学报 (石油加工), 2003, 19(2): 82-87. |
ZHANG Longli , ZHANG Shijie , YANG Guohua , et al . Colloid stability of atmospheric redidual oil during thermal reaction[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2003, 19(2): 82-87. | |
104 | 张龙力, 刘动动, 赵愉生, 等 . 沙特减压渣油临氮热反应过程中沥青质聚集体尺寸变化研究[J]. 燃料化学学报, 2013, 41(1): 46-52. |
ZHANG Longli , LIU Dongdong , ZHAO Yusheng , et al . Study on asphaltene aggregate size of ALVR thermal reaction samples under nitrogen atmosphere[J]. Journal of Fuel Chemistry and Technology, 2013, 41(1): 46-52. | |
105 | 张龙力, 杨国华, 阙国和, 等 . 常减压渣油胶体稳定性与组分性质关系的研究[J]. 石油化工高等学校学报, 2010, 23(3): 6-10. |
ZHANG Longli , YANG Guohua , QUE Gohe , et al . The relationship between colloidal stability of atomospheric residues or vacuum residues and the characteristics of fractions[J]. Journal of Petrochemical Universities, 2010, 23(3): 6-10. | |
106 | 张龙力, 杨国华, 阙国和, 等 . 大港常压渣油临氮与临氢热反应过程中胶体稳定性变化研究[J]. 燃料化学学报, 2011, 39(9): 682-688. |
ZHANG Longli , YANG Guohua , QUE Guohe , et al . Colloidal stability variation of Dagang atmosphere residue during thermal reactio under nitrogen or hydrogen[J]. Journal of Fuel Chemistry and Technology, 2011, 39(9): 682-688. | |
107 | 于双林, 山红红, 张龙力, 等 . 常压渣油加氢反应产物体系的胶体稳定性[J]. 中国石油大学学报(自然科学版), 2010, 34(1): 139-143. |
YU Shuanglin , SHAN Honghong , ZHANG Longli , et al . Colloidal stability of atmospheric residue hydrotreating production[J]. Journal of China University of Petroleum, 2010, 34(1): 139-143. | |
108 | 于双林, 张龙力, 杨朝合, 等 . 氢初压对渣油加氢产物胶体稳定性的影响及原因分析[J]. 石化技术与应用, 2010, 28(2): 96-100. |
YU Shuanglin , ZHANG Longli , YANG Chaohe , et al . Effects of hydrogen initial pressure on the colloidal stability of hydrotreated residuum[J]. Petrochemical Technology & Application, 2010, 28(2): 96-100. |
[1] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[2] | 徐贤, 崔楼伟, 刘杰, 施俊合, 朱永红, 刘姣姣, 刘涛, 郑化安, 李冬. 原料组成对半焦中间相结构发展的影响[J]. 化工进展, 2023, 42(5): 2343-2352. |
[3] | 陈哲坤, 潘伟童, 姚顶松, 丁路, 王辅臣. 质子交换膜燃料电池微孔层浆液微观结构与流变性[J]. 化工进展, 2022, 41(7): 3808-3815. |
[4] | 雷瑜, 田蒙蒙, 张心亚, 蒋翔. 超疏水表面自修复及应用的研究进展[J]. 化工进展, 2021, 40(5): 2624-2633. |
[5] | 赵春雷, 朱亚明, 高丽娟, 程俊霞, 赖仕全, 赵雪飞. 乙烯渣油沥青的氧化改性及其热转化行为[J]. 化工进展, 2021, 40(4): 2130-2137. |
[6] | 杨世诚, 孙琦, 谌伦建, 张玉龙, 薛晓晓, 仪桂云. 赤泥改性及其对丁苯橡胶复合材料微观结构和力学性能的影响[J]. 化工进展, 2019, 38(07): 3297-3303. |
[7] | 梁婷, 范振忠, 刘庆旺, 王继刚, 才力, 付沅峰, 仝其雷. 超疏水/超双疏表面自修复方式的研究进展[J]. 化工进展, 2019, 38(07): 3185-3193. |
[8] | 段宇, 徐国宾, 杨德锋, 闫玥. MICP矿化产物中钙离子利用率的影响因素及微观物相分析[J]. 化工进展, 2019, 38(05): 2306-2313. |
[9] | 张政和,杨卫民,谭晶,李好义. 碳纤维石墨化技术研究进展[J]. 化工进展, 2019, 38(03): 1434-1442. |
[10] | 郭鑫, 申海平, 侯焕娣, 李吉广, 黄汤舜. 渣油胶体稳定性研究进展[J]. 化工进展, 2018, 37(S1): 43-48. |
[11] | 周飞, 熊志波, 金晶, 武超, 陆威, 丁旭春. 煅烧温度对磁性铁钛复合氧化物微观结构及脱硝活性的影响[J]. 化工进展, 2018, 37(09): 3410-3415. |
[12] | 李佳辰, 殷琦, 王晨平, 陈明明, 戴领, 张赟, 段钰锋. SO2改性高硫石油焦脱汞实验研究[J]. 化工进展, 2018, 37(02): 540-545. |
[13] | 朱亚明, 何迎莹, 赵雪飞, 王莹, 郭海东, 高丽娟. AlCl3改性净化沥青的液相炭化[J]. 化工进展, 2017, 36(S1): 353-360. |
[14] | 李洪, 张季, 李鑫钢, 高鑫. 分子模拟方法计算相平衡热力学性质的研究进展[J]. 化工进展, 2017, 36(08): 2731-2741. |
[15] | 彭志刚, 张健, 邹长军, 陈大钧, 郑勇. 一种环境响应型水泥石的抗CO2腐蚀性能[J]. 化工进展, 2017, 36(05): 1953-1959. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |