化工进展 ›› 2019, Vol. 38 ›› Issue (03): 1160-1175.DOI: 10.16085/j.issn.1000-6613.2018-0981
收稿日期:
2018-05-14
修回日期:
2018-08-20
出版日期:
2019-03-05
发布日期:
2019-03-05
通讯作者:
张金利
作者简介:
基金资助:
Qijiang LIAO1(),Hongyun QIN1,Mingliang ZHOU2,Minqing ZHANG1,Jinli ZHANG1()
Received:
2018-05-14
Revised:
2018-08-20
Online:
2019-03-05
Published:
2019-03-05
Contact:
Jinli ZHANG
摘要:
高剪切混合器作为一种能量密集型的过程强化手段,具有剪切速率高、局部能量耗散率高的特点,可以实现均质、乳化、溶解、分散、悬浮、结晶、破碎、反应等过程的强化,但尚缺少理性设计方法的系统研究。本文简述了高剪切混合器分类、工作模式,总结了操作参数、结构参数、物性参数等对高剪切混合器的流动与返混特性、微观混合特性、乳化和液液传质特性、气泡分散与气液传质特性、固体破碎与分散特性等的影响规律,简介了高剪切混合设备的工业实用案例;进而提出了该领域有待深入拓展的研究方向,包括高剪切混合器能量效率的提升途径、多相体系下高剪切混合器模型的建立方法、高剪切混合器与其他单元操作耦合规律、高剪切作用与外场协同强化机理、基于高剪切混合器的过程强化工艺优化等。
中图分类号:
廖启江,秦宏云,周鸣亮,张敏卿,张金利. 高剪切混合器研究与应用进展[J]. 化工进展, 2019, 38(03): 1160-1175.
Qijiang LIAO,Hongyun QIN,Mingliang ZHOU,Minqing ZHANG,Jinli ZHANG. Progress of researches and applications for high shear mixers[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1160-1175.
区域 | 能量耗散 | |
---|---|---|
2000r·min-1 | 4000r·min-1 | |
转子扫略区 | 0.368W (48.5%) | 3.037W (48.5%) |
定子区 | 0.058W (7.6%) | 0.488W (7.8%) |
定子射流区 | 0.157W (20.7%) | 1.317W (21.0%) |
剩余区域 | 0.176W (23.1%) | 1.426W (22.8%) |
总能量耗散 | 0.759W (100%) | 6.268W (100%) |
总能量耗散/净功耗 | 67.8% | 69.9% |
表1 2000r/min和4000r/min下4 LRT型(Silverson)高剪切混合器的能量耗散速率分布[9]
区域 | 能量耗散 | |
---|---|---|
2000r·min-1 | 4000r·min-1 | |
转子扫略区 | 0.368W (48.5%) | 3.037W (48.5%) |
定子区 | 0.058W (7.6%) | 0.488W (7.8%) |
定子射流区 | 0.157W (20.7%) | 1.317W (21.0%) |
剩余区域 | 0.176W (23.1%) | 1.426W (22.8%) |
总能量耗散 | 0.759W (100%) | 6.268W (100%) |
总能量耗散/净功耗 | 67.8% | 69.9% |
定子 | 转子扫略区/W | 定子区/W | 定子射流/W | 剩余区域/W | 总能量耗散/W |
---|---|---|---|---|---|
圆孔式定子 | 3.14 (47.1%) | 0.56 (8.4%) | 1.58 (23.7%) | 1.39 (20.8%) | 6.67 |
开缝式定子 | 3.73 (54.9%) | 0.99 (14.6%) | 1.73 (25.4%) | 0.35 (5.1%) | 6.80 |
方孔式定子 | 4.97 (60.3%) | 0.99 (12.0%) | 2.18 (26.5%) | 0.10 (1.2%) | 8.24 |
表2 4 LRT型高剪切混合器配备不同构型定子的能量耗散速率分布[10]
定子 | 转子扫略区/W | 定子区/W | 定子射流/W | 剩余区域/W | 总能量耗散/W |
---|---|---|---|---|---|
圆孔式定子 | 3.14 (47.1%) | 0.56 (8.4%) | 1.58 (23.7%) | 1.39 (20.8%) | 6.67 |
开缝式定子 | 3.73 (54.9%) | 0.99 (14.6%) | 1.73 (25.4%) | 0.35 (5.1%) | 6.80 |
方孔式定子 | 4.97 (60.3%) | 0.99 (12.0%) | 2.18 (26.5%) | 0.10 (1.2%) | 8.24 |
液滴平均直径关联式 | 备注 | 文献 |
---|---|---|
| 间歇型高剪切混合器;无表面活性剂;稀乳液体系,分散相黏度和含率都很低 | [ |
| 间歇型高剪切混合器;表面活性剂添加与否都进行考察;将有无表面活性剂测定的d 3,2进行关联 | [ |
| 连续型高剪切混合器;无表面活性剂;非聚并的煤油-水体系 | [ |
| 连续型高剪切混合器;有表面活性剂;高浓度、对温度敏感以及快速聚并的沥青乳液 | [ |
| 连续型高剪切混合器;有表面活性剂;分散相黏度和含量为低到中等水平 | [ |
| 连续型高剪切混合器;有表面活性剂;稀乳液体系。Webber数的指数与高剪切混合器的规格关系不大,随分散相的黏度变化 | [ |
| 连续型高剪切混合器;有表面活性剂;稀乳液体系 | [ |
表3 高剪切混合器内乳化过程中的平均液滴直径关联式[27]
液滴平均直径关联式 | 备注 | 文献 |
---|---|---|
| 间歇型高剪切混合器;无表面活性剂;稀乳液体系,分散相黏度和含率都很低 | [ |
| 间歇型高剪切混合器;表面活性剂添加与否都进行考察;将有无表面活性剂测定的d 3,2进行关联 | [ |
| 连续型高剪切混合器;无表面活性剂;非聚并的煤油-水体系 | [ |
| 连续型高剪切混合器;有表面活性剂;高浓度、对温度敏感以及快速聚并的沥青乳液 | [ |
| 连续型高剪切混合器;有表面活性剂;分散相黏度和含量为低到中等水平 | [ |
| 连续型高剪切混合器;有表面活性剂;稀乳液体系。Webber数的指数与高剪切混合器的规格关系不大,随分散相的黏度变化 | [ |
| 连续型高剪切混合器;有表面活性剂;稀乳液体系 | [ |
项目 | 原工艺 | 新工艺 |
---|---|---|
分散时间/h | 8~10 | 1~2 |
电机功率/kW | 45 | 22 |
投料方式 | 人工 | 在线自吸 |
分散效果 | 有团聚 | 均匀 |
表4 电池浆料分散纳米SiO2粉体应用对比[5]
项目 | 原工艺 | 新工艺 |
---|---|---|
分散时间/h | 8~10 | 1~2 |
电机功率/kW | 45 | 22 |
投料方式 | 人工 | 在线自吸 |
分散效果 | 有团聚 | 均匀 |
项目 | 原工艺 | 新工艺 |
---|---|---|
生产时间/h | 1 | 0.5 |
粒径/μm | 100~300 | 50~80 |
表5 农药悬浮剂分散工业应用对比[5]
项目 | 原工艺 | 新工艺 |
---|---|---|
生产时间/h | 1 | 0.5 |
粒径/μm | 100~300 | 50~80 |
1 | 孙宏伟, 陈建峰 . 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
SUN H W , CHEN J F . Advances in fundamental study and application of chemical processintensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
2 | ZHANG J , XU S , LI W . High shear mixers:a review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties[J]. Chemical Engineering and Processing:Process Intensification, 2012, 57: 25-41. |
3 | GUICHARDON P , FALK L , ANDRIEU M . Experimental comparison of the iodide-iodate and the diazo coupling micromixing test reactions in stirred reactors[J]. Chemical Engineering Research and Design, 2001, 79(8): 906-914. |
4 | ATIEMO-OBENG V , CALABRESE R V . Rotor-stator mixing devices[M]// Handbook of Industrial Mixing: Science and Practice. New York:John Wiley & Sons Inc., 2004: 479-505. |
5 | 上海弗鲁克科技发展有限公司 . http://www.fluko.net/.FLUKO Equipment Shanghai Co. Ltd., |
6 | CHENG Q , XU S , SHI J , et al . Pump capacity and power consumption of two commercial in-line high shear mixers[J]. Industrial & Engineering Chemistry Research, 2012, 52(1): 525-537. |
7 | DOUCET L , ASCANIO G , TANGUY P A . Hydrodynamics characterization of rotor-stator mixer with viscous fluids[J]. Chemical Engineering Research and Design, 2005, 83(10): 1186-1195. |
8 | KHOPKAR A R , FRADETTE L , TANGUY P A . Hydrodynamics of a dual shaft mixer with newtonian and non-newtonian fluids[J]. Chemical Engineering Research and Design, 2007, 85(6): 863-871. |
9 | UTOMO A T , BAKER M , PACEK A W . Flow pattern, periodicity and energy dissipation in a batch rotor-stator mixer[J]. Chemical Engineering Research and Design, 2008, 86(12): 1397-1409. |
10 | UTOMO A , BAKER M , PACEK A W . The effect of stator geometry on the flow pattern and energy dissipation rate in a rotor–stator mixer[J]. Chemical Engineering Research and Design, 2009, 87(4): 533-542. |
11 | MORTENSEN H H , CALABRESE R V , INNINGS F , et al . Characteristics of batch rotor–stator mixer performance elucidated by shaft torque and angle resolved PIV measurements[J]. The Canadian Journal of Chemical Engineering, 2011, 89(5): 1076-1095. |
12 | MORTENSEN H H , INNINGS F , HÅKANSSON A . The effect of stator design on flowrate and velocity fields in a rotor-stator mixer——an experimental investigation[J]. Chemical Engineering Research and Design, 2017, 121: 245-254. |
13 | ÖZCAN-TAŞKIN G , KUBICKI D , PADRON G . Power and flow characteristics of three rotor-stator heads[J]. The Canadian Journal of Chemical Engineering, 2011, 89(5): 1005-1017. |
14 | XU S , CHENG Q , LI W , et al . LDA measurements and CFD simulations of an in-line high shear mixer with ultrafine teeth[J]. AIChE Journal, 2014, 60(3): 1143-1155. |
15 | JASIŃSKA M , BAŁDYGA J , COOKE M , et al . Application of test reactions to study micromixing in the rotor-stator mixer(test reactions for rotor-stator mixer)[J]. Applied Thermal Engineering, 2013, 57(1): 172-179. |
16 | COOKE M , RODGERS T L , KOWALSKI A J . Power consumption characteristics of an in-line Silverson high shear mixer[J]. AIChE Journal, 2012, 58(6): 1683-1692. |
17 | ZHANG C , GU J , QIN H , et al . CFD analysis of flow pattern and power consumption for viscous fluids in in-line high shear mixers[J]. Chemical Engineering Research and Design, 2017, 117: 190-204. |
18 | QIN H , XU Q , LI W , et al . Effect of stator geometry on the emulsification and extraction in the inline single-row blade-screen high shear mixer[J]. Industrial & Engineering Chemistry Research, 2017, 56: 9376-9388. |
19 | XU S , SHI J , CHENG Q , et al . Residence time distributions of in-line high shear mixers with ultrafine teeth[J]. Chemical Engineering Science, 2013, 87: 111-121. |
20 | 张晨, 秦宏云, 徐钦, 等 . CFD优化管线式高剪切混合器停留时间分布[J]. 化工进展, 2016, 35(10): 3110-3117. |
ZHANG C , QIN H Y , XU Q , et al . Optimization of residence time distribution of in-line high shear mixer by CFD[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3110-3117. | |
21 | BOURNE J , GARCIA-ROSAS J . Rotor-stator mixers for rapid micromixing[J]. Chemical Engineering Research and Design, 1986, 64(1): 11-17. |
22 | BOURNE J R , STUDER M . Fast reactions in rotor-stator mixers of different size[J]. Chemical Engineering and Processing: Process Intensification, 1992, 31(5): 285-296. |
23 | CHU G W , SONG Y H , YANG H J , et al . Micromixing efficiency of a novel rotor–stator reactor[J]. Chemical Engineering Journal, 2007, 128(2): 191-196. |
24 | 张占元, 闵健, 高正明 . 连续高速分散混合器内的微观混合性能[J]. 北京化工大学学报(自然科学版), 2008, 35(5): 4-7. |
ZHANG Z Y , MIN J , GAO Z M . Micromixing characteristics of a continuous rotor-stator mixer[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2008, 35(5): 4-7. | |
25 | 杨蕾, 李志鹏, 高正明 . 多级定转子连续分散混合器内的微观混合性能[J]. 北京化工大学学报(自然科学版), 2010, 37(1): 1-4. |
YANG L , LI Z P , GAO Z M . Micromixing characteristics in a continuous rotor-stator mixer [J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2010, 37(1): 1-4. | |
26 | QIN H , ZHANG C , XU Q , et al . Geometrical improvement of inline high shear mixers to intensify micromixing performance[J]. Chemical Engineering Journal, 2017, 319: 307-320. |
27 | 徐双庆 . 管线型高剪切混合器流体力学与返混特性[D]. 天津: 天津大学, 2012. |
XU S Q . Hydrodynamics and backmixing properties of in-line high shear mixers[D]. Tianjin: Tianjin University, 2012. | |
28 | CALABRESE R V , FRANCIS M K , KEVALA K R , et al . Fluid dynamics and emulsification in high shear mixers[C]// Proc. 3rd World Congress on Emulsions, France, 2002: 24-27. |
29 | CALABRESE R V , FRANCIS M K , MISHRA V P , et al . Measurement and analysis of drop size in a batch rotor-stator mixer[C]// Proc. 10th European Conference on Mixing, Netherlands, 2000: 149-156. |
30 | PADRON G A . Effect of surfactants on drop size distributions in a batch, rotor-stator mixer[D]. Maryland: University of Maryland College Park, 2005. |
31 | THAPAR N . Liquid-liquid dispersions from in-line rotor-stator mixers[D]. Cranfield Bedfordshire: Cranfield University, 2004. |
32 | GINGRAS J P , TANGUY P A , MARIOTTI S , et al . Effect of process parameters on bitumen emulsions[J]. Chem. Eng. Process, 2005, 44(9): 979-986. |
33 | HALL S , COOKE M , El-HAMOUZ A , et al . Droplet break-up by in-line Silverson rotor-stator mixer[J]. Chem. Eng. Sci., 2011, 66(10): 2068-2079. |
34 | HALL S , COOKE M , PACEK A W , et al . Scaling up of Silverson rotor-stator mixers[J]. The Canadian Journal of Chemical Engineering, 2011, 89(5): 1040-1050. |
35 | SHI J , XU S , QIN H , et al . Single-pass emulsification processes in two different inline high shear mixers[J]. Industrial & Engineering Chemistry Research, 2013, 52: 14463-14471. |
36 | GU J , XU Q , ZHOU H , et al . Liquid-liquid mass transfer property of two inline high shear mixers[J]. Chemical Engineering and Processing: Process Intensification, 2016, 101: 16-24. |
37 | JASIŃSKA M , BAŁDYGA J , COOKE M , et al . In investigations of mass transfer and micromixing effects in two-phase liquid-liquid systems with chemical reaction[C]//European Conference on Mixing, 2012. |
38 | 林海霞 . 定-转子反应器气液传质及压降特性研究[D]. 北京: 北京化工大学, 2007. |
LIN H X . Studies on gas-liquid mass transfer and pressure drop characteristics of rotor-stator reactor[D]. Beijing: Beijing University of Chemical Technology, 2007. | |
39 | 林海霞, 宋云华, 初广文, 等 . 定-转子反应器气液传质特性实验研究[J]. 高校化学工程学报, 2007, 21(5): 882-886. |
LIN H X , SONG Y H , CHU G W , et al . Experimental investigation of gas-liquid mass transfer characteristics of roto-stator reactor[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(5): 882-886. | |
40 | 牛晓红, 宋云华, 陈建铭, 等 . 不同内部结构定-转子反应器气液传质实验研究[J]. 高校化学工程学报, 2009, 23(3): 381-386. |
NIU X H , SONG Y H , CHEN J M , et al . Gas-liquid mass transfer characteristics of rotor-stator reactor with different inner structures[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(3): 381-386. | |
41 | LI Y W , SUN B C , ZENG Z Q , et al . A study on the absorption of ammonia into water in a rotor-stator reactor[J]. Canadian Journal of Chemical Engineering, 2015, 93(1): 116-120. |
42 | LI Y , CHU G , SUN B , et al . Absorption of ammonia into water-in-oil microemulsion in a rotor-stator reactor[J]. Chemical Engineering & Processing, 2014, 87: 68-74. |
43 | ZHAO Z , ZHANG X , LI G , et al . Mass transfer characteristics in a rotor-stator reactor[J]. Chemical Engineering & Technology, 2017, 40: 1078-1083. |
44 | SHI J T , XU S Q , QIN H Y , et al . Gas-liquid mass transfer characteristics in two inline high shear mixers[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4894-4901. |
45 | ÖZCAN-TAŞKIN N G , PADRON G , VOELKEL A . Effect of particle type on the mechanisms of break up of nanoscale particle clusters[J]. Chemical Engineering Research and Design, 2009, 87 (4): 468-473. |
46 | BALDYGA J , ORCIUCH W , MAKOWSKI L , et al . Dispersion of nanoparticle clusters in a rotor-stator mixer[J]. Industrial & Engineering Chemistry Research, 2008, 47 (10): 3652-3663. |
47 | ÖZCAN-TAŞKIN N G , PADRON G A , KUBICKI D . Comparative performance of in-line rotor-stators for deagglomeration processes[J]. Chemical Engineering Science, 2016, 156: 186-196. |
48 | KAMALY S W , TARLETON A C , ÖZCAN-TAŞKIN N G . Dispersion of clusters of nanoscale silica particles using batch rotor-stators[J]. Advanced Powder Technology, 2017, 28 (9): 2357-2365. |
49 | LIU L , SHEN Z , YI M , et al . A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces[J]. RSC Advances, 2014, 4(69): 36464-36470. |
50 | PATON K R , VARRLA E , BACKES C , et al . Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624-630. |
51 | YANG C , ZHANG J , LI W , et al . Synthesis of aragonite CaCO3 nanocrystals by reactive crystallization in a high shear mixer[J]. Crystal Research and Technology, 2017, 52: 1700002. |
52 | 初广文, 宋云华, 陈建铭, 等 . 定-转子反应器制备纳米碳酸钙[J]. 化工进展, 2005, 24(5): 545-548. |
CHU G W , SONG Y H , CHEN J M , et al . Preparation of nano CaCO3 by rotor stator reactor[J]. Chemical Industry and Engineering Progress, 2005, 24(5): 545-548. | |
53 | 初广文 . 定-转子反应器开发研究[D]. 北京: 北京化工大学, 2007. |
CHU G W . Development of rotor-stator reactor [D]. Beijing: Beijing University of Chemical Technology, 2007. | |
54 | 宋云华, 李晶晶, 陈建铭, 等 . 定-转子反应器结合水热法制备碱式硫酸镁晶须[J]. 化工学报, 2009, 60(3): 756-761. |
SONG Y H , LI J J , CHEN J M , et al . Preparation of basic magnesium sulfate whiskers by rotor-stator reactor and hydrothermal method[J]. Journal of Chemical Industry and Engineering(China), 2009, 60(3): 756-761. | |
55 | 张金利, 闫少伟, 徐双庆, 等 . 用于液-液快速混合与反应的撞击流高剪切反应器: CN101716486[P]. 2010-06-02. |
ZHANG J L , YAN S W , XU S Q , et al . Impinging stream high-shear reactor for liquid quick mixing and reaction: CN101716486[P]. 2010-06-02. | |
56 | 齐大翠, 田富强, 张敏卿 . 高剪切反应器中对叔丁基甲苯氧化过程的研究[J]. 化学工程, 2012, 40(7): 65-68. |
QI D C , TIAN F Q , ZHANG M Q . Oxidation process of p-tert-butyltoluene in high-shearing reactor[J]. Chemical Engineering, 2012, 40(7): 65-68. | |
57 | 曹正祥, 丰锡强, 王乃静 . 聚对苯二甲酰对苯二胺连续聚合工艺与设备[J]. 合成纤维, 1984(4): 32-37. |
CAO Z X , FENG X Q , WANG N J . Process and equipment of continuous polymerization for poly-p-phenylene terephthamide)[J]. Synthetic Fiber in China, 1984(4): 32-37. | |
58 | 王攀峰 . 高剪切泵在腈纶聚合装置中的应用[J]. 炼油与化工, 2014(4): 55-55. |
WANG P F . Application of high shear pump in acrylic fibres polymerization unit[J]. Refining and Chemical Industry, 2014(4): 55-55. | |
59 | WANG H , LI Y , ZHANG Y , et al . Preparation of CeO2 nano-support in a novel rotor-stator reactor and its use in Au-based catalyst for CO oxidation[J]. Powder Technol., 2015, 273: 191-196. |
60 | LI Y , WANG H , AROWO M , et al . Synthesis of nano-Ce0.5Zr0.5O2 by absorption of ammonia into water-in-oil microemulsion in a rotor-stator reactor[J]. Journal of Nanoparticle Research, 2015, 17(1): 1-10. |
61 | 杨超 . 高剪切混合器在制备纳米材料中的应用研究[D]. 天津: 天津大学, 2017. |
YANG C . Application of high shear mixer in preparation of nanomaterials[D]. Tianjin: Tianjin University, 2017 | |
62 | LIU Y , GU J , ZHANG J , et al . Controllable synthesis of nano-sized LiFePO4/C via a high shear mixer facilitated hydrothermal method for high rate Li-ion batteries[J]. Electrochimica Acta, 2015, 173: 448-457. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[6] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[7] | 王尚彬, 欧红香, 薛洪来, 曹海珍, 王钧奇, 毕海普. 黄原胶和纳米二氧化硅对无氟泡沫性能的影响[J]. 化工进展, 2023, 42(9): 4856-4862. |
[8] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[9] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[10] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[11] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[12] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[13] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
[14] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[15] | 章凯, 金捍宇, 刘思宇, 王帅. 鼓泡流态化气泡间相互作用下相间传质过程的模拟[J]. 化工进展, 2023, 42(6): 2828-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |