化工进展 ›› 2019, Vol. 38 ›› Issue (01): 183-195.DOI: 10.16085/j.issn.1000-6613.2018-0998
收稿日期:
2018-05-12
修回日期:
2018-07-21
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
孙予罕
作者简介:
高鹏(1987—),男,副研究员,博士生导师,研究方向为碳一化学与催化。E-mail:<email>gaopeng@sari.ac.cn</email>。|孙予罕,研究员,博士生导师,研究方向为碳一化学与工程。E-mail:<email>sunyh@sari.ac.cn</email>。
基金资助:
Peng GAO1(),Xu CUI1,2,Liangshu ZHONG1,Yuhan SUN1()
Received:
2018-05-12
Revised:
2018-07-21
Online:
2019-01-05
Published:
2019-01-05
Contact:
Yuhan SUN
摘要:
一氧化碳/二氧化碳(CO/CO2)转化利用是碳一化学与CO2捕集利用中的重要环节,也是当今碳资源的非石油路线利用最具挑战性的方向之一。CO2的高效活化与定向转化是CO2利用过程中的关键问题,而CO加氢转化最大的瓶颈问题为如何有效控制C-O键的活化、C—C键的形成、碳链增长及终止。本文主要综述 CO/CO2加氢高选择性合成重要化工原料低碳烯烃(C2 =~C4 =)以及一步高效合成汽油馏分(C5~C11)等方面取得的突破性进展。目前,CO/CO2加氢主要经过费托合成与氧化物/分子筛双功能两条路线合成低碳烯烃与汽油燃料。针对费托合成C2 =~C4 =,分析表明棱柱状碳化钴得到的烃类产物分布可以显著突破Anderson-Schulz-Flory(ASF)分布的限制,而分子筛已被广泛用于构建双功能费托催化剂,由于酸性分子筛具有加氢裂化、低聚与异构化等功能,使得CO/CO2还可以直接高选择性地转化为C5~C11烃类。另一方面,将可以活化CO或CO2到甲醇的可还原型氧化物与具有C—C偶联功能的SAPO-34或HZSM-5分子筛进行耦合,也可以实现CO/CO2加氢一步合成低碳烯烃或汽油且具有非常优异的选择性和高转化率。今后,借鉴纳米合成领域新方法,使产物分布打破经典ASF限制,最大限度地提高目标烃类化合物的选择性并显著减少甲烷的生成是研究关键。
中图分类号:
高鹏, 崔勖, 钟良枢, 孙予罕. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展, 2019, 38(01): 183-195.
Peng GAO, Xu CUI, Liangshu ZHONG, Yuhan SUN. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 183-195.
1 | 何鸣元, 孙予罕 . 绿色碳科学——化石能源增效减排的科学基础[J]. 中国科学:化学, 2011, 41(5):925-932. |
HE M Y , SUN Y H .Green carbon science: Scientific basis for the efficient utilization of fossil energy with low emission[J]. Scientia Sinica Chimica, 2011, 41(5): 925-932. | |
2 | 唐志永, 孙予罕, 江绵恒 .低碳复合能源系统——中国未来能源的解决方案和发展模式?[J]. 中国科学: 化学, 2013, 43(1): 116-124. |
TANG Z Y , SUN Y H , JIANG M H .Low-carbon hybrid energy systems——Future energy solutions and development models in China? [J].Scientia Sinica Chimica, 2013, 43(1): 116-124. | |
3 | BILOEN P .On the mechanism of the Fischer‐Tropsch synthesis[J]. Recueil des Travaux Chimiques des Pays-Bas, 1980, 99(2): 33-39. |
4 | BILOEN P , SACHTLER W M H .Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts[J]. Advances in Catalysis, 1981, 30(10): 165-216. |
5 | BRADY R C , PETTIT R . Reactions of diazomethane on transition-metal surfaces and their relationship to the mechanism of the Fischer-Tropsch reaction[J]. Journal of the American Chemical Society, 1980, 102(19): 6181-6182. |
6 | BRADY R C , PETTIT R . Mechanism of the Fischer-Tropsch reaction. The chain propagation step[J]. Journal of the American Chemical Society, 1981, 103(5): 1287-1289. |
7 | LAAN G V D , BEENACKERS A A C M .Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review[J]. Catalysis Reviews, 1999, 41:255-318. |
8 | 马光远, 徐艳飞, 王捷, 等 . 合成气直接法制取低碳烯烃铁基催化体系研究进展[J]. 化工进展, 2018, 37(3): 992-1000. |
MA G Y, XU Y F , WANG J , et al .Research progress of iron-based catalyst for converting syngas directly to light olefins[J]. Chemical Industry and Engineerig Progress, 2018, 37(3): 992-1000. | |
9 | JIAO F , LI J J , PAN X L , et al . Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
10 | ZHONG L S , YU F , AN Y L , et al . Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature, 2016, 538(7623): 84-87. |
11 | 张妍, 徐润, 牛传峰 .高温费托合成技术的研究进展[J]. 化工进展, 2017, 36(s1): 142-148. |
ZHANG Y , XU R , NIU C F .Research process in the high-temperature Fischer-Tropsch synthesis[J]. Chemical Industry and Progress, 2017, 36(s1): 142-148. | |
12 | DRY M E , ERASMUS H B W . Update of the sasol synfuels process[J]. Annual Review of Energy, 2003, 12(1): 1-46. |
13 | BUESSEMEIER B , FROHNING C D , CORNILS B . Lower olefins via Fischer-Tropsch[J]. Hydrocarbon Processing, 1976, 55(11): 105-112. |
14 | BUSSEMEIER B , FROHNING C D , HORN G , et al . Process for the production of unsaturated hydrocarbons:US4455395[P].1984-06-19. |
15 | BUSSEMEIER B , FROHNING C D , HORN G , et al . Process for the manufacture of unsaturated hydrocarbons:US4564642[P].1986-01-14. |
16 | ZHAI P , XU C , GAO R , et al . Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition, 2016, 55(34): 9902-9907. |
17 | GALVIS H M T , BITTER J H , KHARE C B , et al .Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070): 838-838. |
18 | GALVIS H M T , KOEKEN A C J , BITTER J H , et al .Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. Catalysis Today, 2013, 215: 95-102. |
19 | MOHANDAS J C , GNANAMANI M K , JACOBS G , et al .Fischer-Tropsch synthesis: characterization and reaction testing of cobalt carbide[J]. ACS Catalysis, 2011, 1(11): 1581-1588. |
20 | 于飞, 李正甲, 安芸蕾, 等 . 合成气催化转化直接制备低碳烯烃研究进展[J]. 燃料化学学报, 2016, 44(7): 801-814. |
YU F , LI Z J , AN Y L , et al . Research progress in the direct conversion of syngas to lower olefins[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 801-814. | |
21 | LI Z J , ZHONG L S , YU F , et al . Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions[J]. ACS Catalysis, 2017, 7(5): 3622-3631. |
22 | LI Z J , LIN T J , YU F , et al .The mechanism of Mn promoter via CoMn spinel for morphology control: formation of Co2C nanoprisms for Fischer-Tropsch to olefins reaction [J]. ACS Catalysis, 2017, 7(12): 8023-8032. |
23 | WEATHERBEE G D , BARTHOLOMEW C H .Hydrogenation of CO2 on group VIII metals: IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru[J]. Journal of Catalysis, 1984, 87(2): 352-362. |
24 | RIEDEL T , SCHAUB G , JUN K W , et al .Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 40(5): 1355-1363. |
25 | ROHDE M P , UNRUH D , SCHAUB G .Membrane application in Fischer-Tropsch synthesis to enhance CO2 hydrogenation[J]. Industrial & Engineering Chemistry Research, 2005, 44(25): 9653-9658. |
26 | WANG W , WANG S P , MA X B, et al .Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
27 | OWEN R E , PLUCINSKI P , MATTIA D , et al .Effect of support of Co-Na-Mo catalysts on the direct conversion of CO2 to hydrocarbons[J]. Journal of CO2 Utilization, 2016, 16: 97-103. |
28 | DORNER R W , HARDY D R , WILLIAMS F W , et al .Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy & Environmental Science, 2010, 3(7): 884-890. |
29 | CHOI P H , JUN K W , LEE S J , et al .Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts[J]. Catalysis Letters, 1996, 40(1/2): 115-118. |
30 | XU L Y , WANG Q X , LIANG D B , et al .The promotions of MnO and K2O to Fe/silicalite-2 catalyst for the production of light alkenes from CO2 hydrogenation[J]. Applied Catalysis A:General, 1998, 173: 19-25. |
31 | NING W S , KOIZUMI N , YAMADA M .Researching Fe catalyst suitable for CO2-containing syngas for Fischer−Tropsch synthesis[J]. Energy & Fuels, 2009, 23(3): 4696-4700. |
32 | DORNER R W , HARDY D R , WILLIAMS F , et al .K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst's active phase[J]. Applied Catalysis A: General, 2010, 373(1/2): 112-121. |
33 | WILLAUER H D , ANANTH R , OLSEN MT , et al . Modeling and kinetic analysis of CO2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor[J]. Journal of CO2 Utilization, 2013, 3/4: 56-64. |
34 | GNANAMANI M K , JACOBS G , KEOGH R A , et al .Fischer-Tropsch synthesis: effect of pretreatment conditions of cobalt on activity and selectivity for hydrogenation of carbon dioxide[J]. Applied Catalysis A: General, 2015, 499(25): 39-46. |
35 | FISCHER N , HENKEL R , HETTEL B , et al . Hydrocarbons via CO2 hydrogenation over iron catalysts: the effect of potassium on structure and performance[J]. Catalysis Letters, 2016, 146(2): 509-517. |
36 | PRASAD P S S , BAE J W , JUN K W , et al .Fischer-Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catalysis Surveys from Asia, 2008, 12(3): 170-183. |
37 | RIEDEL T , CLAEYS M , SCHULZ H , et al . Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts[J]. Applied Catalysis A:General, 1999, 186(1/2): 201-213. |
38 | CHERNAVSKII P , KAZAK V O , PANKINA G , et al .Influence of copper and potassium on the structure and carbidisation of supported iron catalysts for Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2017, 7: 2325-2334. |
39 | VISCONTI C G , MARTINELLI M , FALBO L , et al .CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Applied Catalysis B:Environmental, 2017, 200: 530-542. |
40 | WANG J J , YOU Z Y , ZHANG Q H , et al .Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J]. Catalysis Today, 2013, 215(41): 186-193. |
41 | GNANAMNI M K , JACOBS G , HAMDEH H H , et al .Hydrogenation of carbon dioxide over Co-Fe bimetallic catalysts[J]. ACS Catalysis, 2016, 6(2): 913-927. |
42 | WEI J , SUN J , WEN Z Y , et al .New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2016, 6(13): 4786-4793. |
43 | DORNER R W , HARDY D R , WILLIAMS F W , et al .C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts[J]. Catalysis Communications, 2011, 15(1): 88-92. |
44 | TORRENTE-MURCIANO L , CHAPMAN R S , NARVAEA-DINAMARCA A , et al .Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons[J]. Physical Chemistry Chemical Physics, 2016, 18(23): 15496-15500. |
45 | HU S , LIU M , DING F S , et al .Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J]. Journal of CO2 Utilization, 2016, 15: 89-95. |
46 | PRASAD P S S , BAE J W , JUN K W , et al .Fischer-Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts[J]. Catalysis Surveys from Asia, 2008, 12(3): 170-183. |
47 | HU B X , FRUEH S , GARCE H F , et al .Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts[J]. Applied Catalysis B: Environmental, 2013, 132/133(12): 54-61. |
48 | KANG J C , CHENG K , ZHANG L , et al .Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5—C11 isoparaffins[J]. Angewandte Chemie-International Edition, 2011, 50(22): 5200-5203. |
49 | CHENG K , ZHANG L , KANG J C , et al . Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles[J]. Chemistry, 2015, 21(5): 1928-1937. |
50 | WEI J , GE Q J , YAO R W , et al . Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174-15181. |
51 | BUKUR D B , MUKESH D , PATEL S A .Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 1990, 29(2): 194-204. |
52 | HERRANZ T , ROJAS S , PEREZ-ALONSO F J , et al .Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology[J]. Applied Catalysis A: General, 2006, 311(1): 66-75. |
53 | CHOI Y H , JANG Y J , PARK H , et al .Carbon dioxide Fischer-Tropsch synthesis: a new path to carbon-neutral fuels[J]. Applied Catalysis B: Environmental, 2017, 202: 605-610. |
54 | HUTCHINGS G J , JOHNSTON P , LEE D F , et al .The conversion of methanol and other O-compounds to hydrocarbons over zeolite β[J]. Journal of Catalysis, 1994, 147(1): 249-259. |
55 | CHEN Y P , XU Y M , CHENG D G , et al .C2—C4 hydrocarbons synthesis from syngas over CuO-ZnO-Al2O3/SAPO-34 bifunctional catalyst[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(3): 415-422. |
56 | LI J J , PAN X L , BAO X H .Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2 @SAPO-34 catalyst[J]. Chinese Journal of Catalysis, 2015, 36(7): 1131-1135. |
57 | CHENG K , BU B , LIU X L , et al .Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst Ccombining methanol synthesis and carbon-carbon coupling[J]. Angewandte Chemie International Edition, 2016, 55(15): 4725-4728. |
58 | GAO P , LI S G , BU X N , et al .Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemistry, 2017, 9: 1019-1-24. |
59 | WANG J J , LI G N , LI Z L , et al .A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): 1701290. |
60 | LI Z L , WANG J J , QU Y Z , et al .Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
61 | LIU X L , WANG M H , ZHOU C , et al .Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chemical Communications, 2018, 54(2): 140-143. |
62 | DAGLE R A , LIZARAZO-ADARME J A , DAGLE V L , et al .Syngas conversion to gasoline-range hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 composite catalyst system[J].Fuel Processing Technology, 2014, 123: 65-74. |
63 | ERENA J , ARANDES J M , BILBAO J , et al .Study of physical mixtures of Cr2O3-ZnO and ZSM-5 catalysts for the transformation of syngas into liquid hydrocarbons[J].Industrial & Engineering Chemistry Research, 1998, 37(4): 1211-1219. |
64 | INUI T , KITAGAWA K , TAKEGUCHI T , et al .Hydrogenation of carbon dioxide to C1—C7 hydrocarbons via methanol on composite catalysts[J]. Applied Catalysis A: General, 1993, 94(1): 31-44. |
65 | FUJIWARA M , KIEFFER R , ANDO H , et al . Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide[J]. Applied Catalysis A: General, 1995, 121(1): 113-124. |
66 | EREÑA J , ARANDES J M , GAROÑA R , et al . Study of the preparation and composition of the metallic function for the selective hydrogenation of CO2 to gasoline over bifunctional catalysts[J]. Journal of Chemical Technology & Biotechnology, 2010, 78(2/3): 161-166. |
67 | 王野 .二氧化碳直接高选择性合成液体燃料[J]. 物理化学学报, 2017, 33(12): 2319-2320. |
WANG Y .Direct conversion of CO2 into liquid fuels with high selectivity [J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2319-2320. | |
68 | NI X M , TAN Y , HAN Y Z , et al .Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation[J]. Catalysis Communications, 2007, 8(11): 1711-1714. |
69 | BAI R X , TAN Y S , HAN Y Z , et al .Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts[J]. Fuel Processing Technology, 2004, 86(3): 293-301. |
70 | WANG X X , YANG G H , ZHANG J F , et al .Synthesis of isoalkanes over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO2 hydrogenation[J]. Chemical Communications, 2016, 52(46): 7352-7355. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[8] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[11] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[12] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[13] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[14] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[15] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |