[1] Fan Y,Bao X,Shi G,et al. Hβ/HZSM-5 composite carrier supported catalysts for olefins reduction of FCC gasoline via hydroisomerization and aromatization[J]. Catal. Lett.,2005,105(1):67-75. [2] Liu H,Yu J,Fan Y,et al. A scenario-based clean diesel production strategy for China National Petroleum Corporation[J]. Pet. Sci.,2011,8(2):229-238. [3] 袁起民,龙军,谢朝纲,等. 高氮原料的催化裂化研究进展[J]. 化工进展,2008,27(12):1929-1936. [4] Hou B,Cao Z,Chen W,et al. Properties and chemical composition of typical coker gas oil[J]. Pet. Sci. Technol.,2007,25:1013-1025. [5] Wang G,Li Z,Huang H,et al. Synergistic process for coker gas oil and heavy cycle oil conversion for maximum light production[J]. Ind. Eng. Chem. Res.,2010,49:11260-11268. [6] Bae E J,Na J G,Chung S H,et al. Identification of about 30000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil[J]. Energy & Fuels,2010,24:2563-2569. [7] Chen X,Shen B,Sun J,et al. Characterization and comparison of nitrogen compounds in hydrotreated and untreated shale oil by electrospray ionization (ESI) fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)[J]. Energy & Fuels,2012,26:1707-1714. [8] Lee Fu-Ming. Activity of vanadium on different catalyst supports[J]. Appl. Catal. A:General,1992,82(2):215-230. [9] Brevoord E,Powels A C. Proceedings of the international symposiumon deactivation and testing of hydrocarbon conversion catalysts[C]. Chicago:ACS,1995. [10] Cerqueira H S,Caeiro G,Costa L,et al. Deactivation of FCC catalysts[J]. Journal of Molecular Catalysis A:Chemical,2008,292:1-13. [11] Mauleon J L,Letzsch W S. Paper presented at the 5th kabalistic ann FCC symp[C]. Vienna,Austria,1984. [12] Guisnet M,Magnoux P. Organic chemistry of coke formation[J]. Appl. Catal. A:General,2001,212:83-96. [13] Cerqueira H S,Patrick M,Dominique M,et al. Coke formation and coke profiles during the transformation of various reactants at 450℃ over a USHY zeolite[J]. Appl. Catal. A:General,2001,208:359-367. [14] Magnoux P,Machado F,Guisnet M,et al. Mechanism of coke formation during the transformation of propane,toluene and propane-toluene mixture on HZSM-5[C]//Budapest:Proceedings of the 10th International Congress on Catalysis,1992. [15] Cerqueira H S,Ayrault P,Datka J,et al. m-Xylene transformation over a USHY zeolite at 523 and 723K:Influence of coke deposits on activity,acidity,and porosity[J]. J. Catal.,2000,196(1):149-157. [16] Pierre C Mihindou-Koumba,Henrique S C,Patrick M,et al. Methylcyclohexane transformation over HFAU,HBEA,and HMFI zeolites: II. Deactivation and coke formation[J]. Ind. Eng. Chem. Res.,2001,40(4):1042-1051. [17] Guisnet M,Magnoux P. Coking and deactivation of zeolites:Influence of the pore structure[J]. Appl. Catal.,1989,54(1):1-27. [18] Perere D,Aline A,Perere C,et al. Methanol conversion on acidic ZSM-5,offretite,and mordenite zeolites:A comparative study of the formation and stability of coke deposits[J]. J. Catal.,1981,70:123-136. [19] Takashi Ino,Sulaiman Al-Khattaf. Effect of unit cell size on the activity and coke selectivity of FCC catalysts[J]. Appl. Catal. A:General,1996,142(1):5-17. [20] Pio Forzatti,Luca Lietti. Catalyst deactivation[J]. J. Catal.,1999,52(2-3):165-181. [21] Nam In-Sik,Froment G F. Catalyst deactivation by site coverage through multi-site reaction mechanisms[J]. J. Catal.,1987,108(2):271-282. [22] Bourdillon G,Gueguen C. Characterization of acid catalysts by means of model reactions:I. Acid strength necessary for the catalysis of various hydrocarbon reactions[J]. Appl. Catal.,1990,61(1):123-139. [23] Caeiro G,Lopesa J M,Magnoux P,et al. A FT-IR study of deactivation phenomena during methylcyclohexane transformation on H-USY zeolites:Nitrogen poisoning,coke formation,and acidity-activity correlations[J]. J. Catal.,2007,249:234-243. [24] Reyniers M F,Tang Y,Marin G B,et al. Influence of coke formation on the conversion of hydrocarbons:II. i-Butene on HY-zeolites[J]. Appl. Catal. A:General,2000,202(1):65-80. [25] Reyniers M F,Beirnaert H,Marin G B,et al. Influence of coke formation on the conversion of hydrocarbons:I. Alkanes on a USY-zeolite[J]. Appl. Catal. A:General,2000,202(1):49-63. [26] Beeckman J W,Froment G F. Catalyst deactivation by active site coverage and pore blockage[J]. Ind. Eng. Chem. Fundamen.,1979,18(3):245-256. [27] Karge H G,NieBen W,Bludau H,et al. In-situ FTIR measurements of diffusion in coking zeolite catalysts[J]. Appl. Catal. A:General,1996,146:339-349. [28] Guisnet M. "Coke" molecules trapped in the micropores of zeolites as active species in hydrocarbon transformations[J]. Journal of Molecular Catalysis A:Chemical,2002,182:367-382. [29] Magnoux P,Cerqueira H S,Guisnet M,et al. Evolution of coke composition during ageing under nitrogen[J]. Appl. Catal. A:General,2002,235:93-99. [30] Corma A,Mocholia F,Orchillesa V,et al. Methylcyclohexane and methylcyclohexene cracking over zeolite Y catalysts[J]. Appl. Catal.,1990,67(1):307-324. [31] 杨雪,田辉平,王世环. 催化裂化待生剂积炭结构组成的多重表征[J]. 石油学报:石油加工,2011,27(2):198-206. [32] 钮根林,杨朝合,山红红,等. 结焦催化剂上焦炭氢碳比的测定方法[J]. 分析化学,2003,31(3):318-321. [33] Cerqueira H S,Carsten S,Guy J,et al. Multitechnique characterization of coke produced during commercial resid FCC operation[J]. Ind. Eng. Chem. Res.,2005,44:2069-2077. [34] 张雪静,徐广通,郑爱国. FCC催化剂上积炭组成及形态分析[J]. 石油学报:石油加工,2012,28(1):60-64. [35] Qian K,Tomczak D C,Rakiewicz E F,et al. Coke formation in the fluid catalytic cracking process by combined analytical techniques[J]. Energy & Fuels,1997,11:596-601. [36] 孙金鹏. 焦化蜡油两段提升管催化裂解与焦化石脑油改质应用基础研究[D]. 青岛:中国石油大学(华东),2011. [37] Bayraktar O,Kugler E L. Characterization of coke on equilibrium fluid catalytic cracking catalysts by temperature-programmed oxidation[J]. Appl. Catal. A:General,2002,233:197-213. [38] 史全,赵锁奇,徐春明,等. 傅立叶变换离子回旋共振质谱仪在石油组成分析中的应用[J]. 质谱学报,2008,29(6):367-378. [39] 张娜,赵锁奇,史全,等. 高分辨质谱解析委内瑞拉奥里常渣减黏反应杂原子化合物组成变化[J]. 燃料化学学报,2011,39(1):37-41. |