1 |
雷兵, 夏峰. 炼厂化工转型技术经济分析[J]. 化工设计通讯, 2020, 46(10): 122-124, 145.
|
|
LEI Bing, XIA Feng. Technical and economic analysis of refinery chemical transformation[J]. Chemical Engineering Design Communications, 2020, 46(10): 122-124, 145.
|
2 |
辛靖, 高杨, 侯章贵, 等. 以生产轻芳烃为目的的催化重整装置原料拓展研究进展[J]. 无机盐工业, 2019, 51(7): 1-7.
|
|
XIN Jing, GAO Yang, HOU Zhanggui, et al. Research progress on expanding feedstocks for catalytic reforming units for the production of light aromatics[J]. Inorganic Chemicals Industry, 2019, 51(7): 1-7.
|
3 |
LEE J, CHOI Y, SHIN J, et al. Selective hydrocracking of tetralin for light aromatic hydrocarbons[J]. Catalysis Today, 2016, 265: 144-153.
|
4 |
鞠雪艳, 胡志海, 蒋东红, 等. 金属与分子筛含量对预加氢1-甲基萘的加氢裂化催化剂的影响[J]. 石油学报(石油加工), 2012, 28(5): 711-716.
|
|
JU Xueyan, HU Zhihai, JIANG Donghong, et al. Effect of metal and zeolite mass fractions on the hydrocracking catalyst of prehydrotreated 1-methyl naphthalene[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(5): 711-716.
|
5 |
陈妍, 宋海涛, 朱玉霞, 等. Beta和Y型分子筛催化四氢萘裂化规律的对比[J]. 石油学报(石油加工), 2015, 31(3): 650-656.
|
|
CHEN Yan, SONG Haitao, ZHU Yuxia, et al. Comparison of the catalytic cracking of tetralin over beta and Y zeolite[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(3): 650-656.
|
6 |
SANTIKUNAPORN M, HERRERA J E, JONGPATIWUT S, et al. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts[J]. Journal of Catalysis, 2004, 228(1): 100-113.
|
7 |
GUISNET M. “Ideal” bifunctional catalysis over Pt-acid zeolites[J]. Catalysis Today, 2013, 218/219: 123-134.
|
8 |
YU W T, POROSOFF M D, CHEN J G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts[J]. Chemical Reviews, 2012, 112(11): 5780-5817.
|
9 |
SETIABUDI H D, JALIL A A, TRIWAHYONO S. Ir/Pt-HZSM5 for n-pentane isomerization: effect of iridium loading on the properties and catalytic activity[J]. Journal of Catalysis, 2012, 294: 128-135.
|
10 |
D’IPPOLITO S A, GUTIERREZ L B, VERA C R, et al. Pt-Mg-Ir/Al2O3 and Pt-Ir/HY zeolite catalysts for SRO of decalin. Influence of Ir content and support acidity[J]. Applied Catalysis A: General, 2013, 452: 48-56.
|
11 |
HANSEN T W, DELARIVA A T, CHALLA S R, et al. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?[J]. Accounts of Chemical Research, 2013, 46(8): 1720-1730.
|
12 |
OUYANG R H, LIU J X, LI W X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions[J]. Journal of the American Chemical Society, 2013, 135(5): 1760-1771.
|
13 |
VU B K, SONG M B, AHN I Y, et al. Propane dehydrogenation over Pt-Sn/rare-earth-doped Al2O3: influence of La, Ce, or Y on the formation and stability of Pt-Sn alloys[J]. Catalysis Today, 2011, 164(1): 214-220.
|
14 |
LOTT P, ECK M, DORONKIN D E, et al. Understanding sulfur poisoning of bimetallic Pd-Pt methane oxidation catalysts and their regeneration[J]. Applied Catalysis B: Environmental, 2020, 278: 119244.
|
15 |
BAUER T, MAISEL S, BLAUMEISER D, et al. Operando DRIFTS and DFT study of propane dehydrogenation over solid- and liquid-supported GaxPty catalysts[J]. ACS Catalysis, 2019, 9(4): 2842-2853.
|
16 |
SATTLER J J, GONZALEZ-JIMENEZ I D, LUO L, et al. Platinum-promoted Ga/Al₂O₃ as highly active, selective, and stable catalyst for the dehydrogenation of propane[J]. Angew. Chem. Int. Ed., 2014, 53(35): 9251-9256.
|
17 |
余杰, 何德东, 陈定凯, 等. 不同金属助剂对HZSM-5分子筛催化分解甲硫醇性能的影响[J]. 化工进展, 2018, 37(3): 1021-1029.
|
|
YU Jie, HE Dedong, CHEN Dingkai, et al. Promoter effects on HZSM-5 zeolite catalysts for catalytic decomposition of methyl mercaptan[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1021-1029.
|
18 |
IBÁÑEZ M, EPELDE E, AGUAYO A T, et al. Selective dealumination of HZSM-5 zeolite boosts propylene by modifying 1-butene cracking pathway[J]. Applied Catalysis A: General, 2017, 543: 1-9.
|
19 |
韩蕾, 欧阳颖, 罗一斌, 等. 不同元素改性ZSM-5分子筛在轻烃催化裂解中的应用[J]. 石油学报(石油加工), 2018, 34(2): 419-429.
|
|
HAN Lei, OUYANG Ying, LUO Yibin, et al. Application of modified ZSM-5 zeolite with different elements in catalytic cracking of light hydrocarbon[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(2): 419-429.
|
20 |
宋兆阳, 张征太, 陈金射, 等. Pt-M双金属双功能轻质烷烃异构化催化剂的研究进展[J]. 石油化工, 2017, 46(1): 1-8.
|
|
SONG Zhaoyang, ZHANG Zhengtai, CHEN Jinshe, et al. Progresses in Pt-M bimetallic bifunctional catalysts for isomerization of light alkanes[J]. Petrochemical Technology, 2017, 46(1): 1-8.
|
21 |
RAMAKER D E, OUDENHUIJZEN M K, KONINGSBERGER D C. Strong support effects on the insulator to metal transition in supported Pt clusters as observed by X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry B, 2005, 109(12): 5608-5617.
|
22 |
CHEN G, XU C, HUANG X, et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts[J]. Nature Materials, 2016, 15(5): 564-569.
|
23 |
BISIO C, FAJERWERG K, MARTRA G, et al. Investigation of co-hosted basic and metal nanoparticles in Pt/Cs-BEA zeolites[J]. Catalysis Today, 2007, 124(1/2): 36-42.
|
24 |
STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis: a review[J]. Catalysis Reviews, 1994, 36(1): 75-123.
|
25 |
王文龙, 安哲, 朱彦儒, 等. 晶格受限GaⅢ诱导Pt高分散及其催化重整性能[J]. 中国科学: 化学, 2020, 50(2): 306-314.
|
|
WANG Wenlong, AN Zhe, ZHU Yanru, et al. Single atom and small cluster Pt induced by lattice-confined GaⅢ improving i-C7 selectivity in catalytic reforming[J]. Scientia Sinica (Chimica), 2020, 50(2): 306-314.
|