Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (02): 419-428.DOI: 10.16085/j.issn.1000-6613.2017-0962
Previous Articles Next Articles
ZHAO Huabo1, LI Min2, LUO Gang2
Received:
2017-05-19
Revised:
2017-09-19
Online:
2018-02-05
Published:
2018-02-05
赵华博1, 李民2, 罗刚2
通讯作者:
赵华博(1985-),男,博士,工程师,研究方向为催化化学。
作者简介:
赵华博(1985-),男,博士,工程师,研究方向为催化化学。E-mail:zhaohuabo@nicenergy.com。
基金资助:
CLC Number:
ZHAO Huabo, LI Min, LUO Gang. Nickel based ethanol steam reforming catalysts: mechanism, deactivation and structure-activity relationship[J]. Chemical Industry and Engineering Progress, 2018, 37(02): 419-428.
赵华博, 李民, 罗刚. 镍基乙醇水汽重整催化剂:机理、失活与构效关系[J]. 化工进展, 2018, 37(02): 419-428.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-0962
[1] 孙道安,李春迎,张伟,等. 典型碳氢化合物水蒸气重整制氢研究进展[J]. 化工进展, 2012, 31(4):801-806. SUN Daoan, LI Chunying, ZHANG Wei, et al. Progress in hydrogen production from the steam reforming of typical hydrocarbons[J]. Chemical Industry and Engineering Progress, 2012, 31(4):801-806 [2] 郭勇,张永光,蔺建民,等. 甘油水相重整制氢研究进展[J]. 化工进展, 2014, 33(1):50-55. GUO Yong, ZHANG Yongguang, LIN Jianmin, et al. Progress in hydrogen production by the aqueous-phase reforming of glycerol[J]. Chemical Industry and Engineering Progress, 2014, 33(1):50-55. [3] 王东旭,肖显斌,李文艳. 乙酸蒸汽催化重整制氢的研究进展[J]. 化工进展, 2017, 36(5):1658-1665. WANG Dongxu, XIAO Xianbin, LI Wenyan. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1658-1665. [4] FISHTIK I, ALEXANDER A, DATTA R, et al. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions[J]. International Journal of Hydrogen Energy, 2000, 25(1):31-45. [5] BHANDE R S. Significance of temperature on conversion of ethanol for hydrogen production by steam reforming——an experimental study[J]. International Journal of Chemical and Physical Sciences, 2013, 2(s1):25-31. [6] BHANDE R S, GOIKAR S S. An experimental study:effect of molar ratios on conversion of ethanol to hydrogen by steam reforming[J]. International Journal of Chemical and Physical Sciences, 2013, 2(s1):18-24. [7] CAVALLARO S. Ethanol steam reforming on Rh/Al2O3 catalysts[J]. Energy & Fuels, 2000, 14(6):1195-1199. [8] BREEN J P, BURCH R, COLEMAN H M. Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications[J]. Applied Catalysis B:Environmental, 2002, 39(1):65-74. [9] ZHANG B, TANG X, LI Y, et al. Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts[J]. Catalysis Communications, 2006, 7(6):367-372. [10] HARYANTO A, FERNANDO S, MURALI N A, et al. Current status of hydrogen production techniques by steam reforming of ethanol:a review[J]. Energy & Fuels, 2005, 19(5):2098-2106. [11] 刘承伟,石秋杰,李彬. 负载型金属催化剂在乙醇水蒸气重整制氢中的应用[J]. 化工进展, 2008, 27(9):1336-1341. LIU Chengwei, SHI Qiujie, LI Bin. Application of supported metallic catalysts in hydrogen production from steam reforming of ethanol[J]. Chemical Industry and Engineering Progress, 2008, 27(9):1336-1341. [12] AUPRETRE F, DESCORME C, DUPREZ D. Bio-ethanol catalytic steam reforming over supported metal catalysts[J]. Catalysis Communications, 2002, 3(6):263-267. [13] 贾英桂,吴洪达,殷宇. 乙醇水蒸气重整制氢反应机理的研究进展[J]. 化工进展, 2012, 31(2):274-282. JIA Yinggui, WU Hongda, YIN Yu. Reaction mechanism research on hydrogen production from ethanol steam reforming[J]. Chemical Industry and Engineering Progress, 2012, 31(2):274-282. [14] ZENG G, LI Y, OLSBYE U. Kinetic and process study of ethanol steam reforming over Ni/Mg(Al)O catalysts:the initial steps[J]. Catalysis Today, 2016, 259(2):312-322. [15] FATSIKOSTAS A N, VERYKIOS X E. Reaction network of steam reforming of ethanol over Ni-based catalysts[J]. Journal of Catalysis, 2004, 225(2):439-452. [16] FRENI S, MONDELLO N, CAVALLARO S, et al. Hydrogen production by steam reforming of ethanol:a two step process[J]. Reaction Kinetics, Mechanisms and Catalysis, 2000, 71(1):143-152. [17] VINCI A, CHIODO V, PAPAGERIDIS K, et al. Ethanol steam reforming in a two-step process. short-time feasibility tests[J]. Energy & Fuels, 2013, 27(3):1570-1575. [18] XU W, LIU Z, JOHNSTONPECK A C, et al. steam reforming of ethanol on Ni/CeO2:reaction pathway and Interaction between Ni and the CeO2 support[J]. ACS Catalysis, 2013, 3(5):975-984. [19] VICENTE J, EREÑA J, MONTERO C, et al. Reaction pathway for ethanol steam reforming on a Ni/SiO2 catalyst including coke formation[J]. International Journal of Hydrogen Energy, 2014, 39(33):18820-18834. [20] LIMA S M D, SILVA A M D, COSTA L O O D, et al. Evaluation of the performance of Ni/La2O3, catalyst prepared from LaNiO3, perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol[J]. Applied Catalysis A:General, 2010, 377(1/2):181-190. [21] RESINI C, VENKOV T, HADJⅡVANOV K, et al. An FTIR study of the dispersed Ni species on Ni-YSZ catalysts[J]. Applied Catalysis A:General, 2009, 353(1):137-143. [22] LIU Z, SENANAYAKE S D, RODRIGUEZ J A. Elucidating the interaction between Ni and CeOx, in ethanol steam reforming catalysts:a perspective of recent studies over model and powder systems[J]. Applied Catalysis B:Environmental, 2016, 197:184-197. [23] BARATTINI L, RAMIS G, RESINI C, et al. Reaction path of ethanol and acetic acid steam reforming over Ni-Zn-Al catalysts. Flow reactor studies.[J]. Chemical Engineering Journal, 2009, 153(1/2/3):43-49. [24] WANG S R, GUO W W, LONG G, et al. Experimental and subsequent mechanism research on the steam reforming of ethanol over a Ni/CeO2 catalyst[J]. International Journal of Green Energy, 2015, 12(7):694-701. [25] 刘利平,李静,马晓建. 乙醇水蒸气重整制氢反应机理及动力学研究进展[J]. 天然气化工(C1化学与化工), 2013, 38(1):78-83. LIU Liping, LI Jing, MA Xiaojian. Research status and outlook on mechanism and kinetics of ethanol steam reforming for hydrogen production[J]. Natural Gas Chemistry Industry, 2013, 38(1):78-83. [26] AKANDE A, ABOUDHEIR A, IDEM R, et al. Kinetic modeling of hydrogen production by the catalytic reforming of crude ethanol over a co-precipitated Ni-Al2O3 catalyst in a packed bed tubular reactor[J]. International Journal of Hydrogen Energy, 2006, 31(12):1707-1715. [27] PATEL M, JINDAL T K, PANT K K. Kinetic study of steam reforming of ethanol on Ni-based ceria-zirconia catalyst[J]. Industrial & Engineering Chemistry Research, 2013, 52(45):15763-15771. [28] WU Y J, SANTOS J C, PING L, et al. Simplified kinetic model for steam reforming of ethanol on a Ni/Al2O3, catalyst[J]. Canadian Journal of Chemical Engineering, 2014, 92(1):116-130. [29] WU C, WILLIAMS P T. Effect of process conditions on the steam reforming of ethanol with a nano-Ni/SiO2 catalyst[J]. Environmental Technology, 2012, 33(6):631-638. [30] GALETTI A E, BARROSO M N, GOMEZ M F, et al. Promotion of Ni/MgAl2O4, catalysts with rare earths for the ethanol steam reforming reaction[J]. Catalysis Letters, 2012, 142(12):1461-1469. [31] SILVA A A A D, COSTA L O O D, MATTOS L V, et al. The study of the performance of Ni-based catalysts obtained from LaNiO3, perovskite-type oxides synthesized by the combustion method for the production of hydrogen by reforming of ethanol[J]. Catalysis Today, 2013, 213(37):25-32. [32] ALBERTON A L, SOUZA M M V M, SCHMAL M. Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3, catalysts[J]. Catalysis Today, 2007, 123(1/2/3/4):257-264. [33] VICENTE J, MONTERO C, EREÑA J, et al. Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2014, 39(24):12586-12596. [34] MONTERO C, OCHOA A, CASTANO P, et al. Monitoring Ni0, and coke evolution during the deactivation of a Ni/La2O3-αAl2O3, catalyst in ethanol steam reforming in a fluidized bed[J]. Journal of Catalysis, 2015, 331:181-192. [35] GATES S M, ROSSELL JR J N, YANTES JR J T. Bond activation sequence observed in the chemisorption and surface reaction of ethanol on Ni(111)[J]. Surface Science Letters, 1986, 171(1):111-134. [36] MARINO F, BARONETTI G, JOBBAGY M, et al. Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming:formation of hydrotalcite-type compounds as a result of metal-support interaction[J]. Applied Catalysis A:General, 2003, 238(1):41-54. [37] CHEN L C, LIN S D. Effects of the pretreatment of CuNi/SiO2, on ethanol steam reforming:influence of bimetal morphology[J]. Applied Catalysis B:Environmental, 2014, s 148/149(17):509-519. [38] ABELLO S, BOLSHAK E, MONTANE D. Ni-Fe catalysts derived from hydrotalcite-like precursors for hydrogen production by ethanol steam reforming[J]. Applied Catalysis A:General, 2013, 450(2):261-274. [39] NAGAI M, AKIYAMA M, OKI Y. Carburized cesium-doped Ni/ZrO2 for efficient hydrogen production and less carbon deposition during ethanol steam reforming[J]. Journal of the Japan Petroleum Institute, 2012, 55(1):67-68. [40] LIU Z, DUCHON T, WANG H, et al. Mechanistic insights of ethanol steam reforming over Ni-CeOx(111):the importance of hydroxyl groups for suppressing coke formation[J]. Journal of Physical Chemistry C, 2015, 119(32):18248-18256. [41] LIU Z, DUCHON T, WANG H, et al. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni-CeO2(111) catalysts:an in situ study of C-C and O-H bond scission[J]. Physical Chemistry Chemical Physics, 2016, 18(25):16621-16628. [42] ZHAO X, LU G. Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming[J]. International Journal of Hydrogen Energy, 2016, 41(5):3349-3362. [43] EBIAD M,ABDELHAFIZ D,ELSALAMONY R,et al. Ni supported high surface area CeO2-ZrO2 catalysts for hydrogen production from ethanol steam reforming[J]. RSC Advances, 2012, 2(21):8145-8156. [44] GALETTI A E, GOMEZ M F, ARRUA L A, et al. Ethanol steam reforming over Ni/ZnAl2O4-CeO2. Influence of calcination atmosphere and nature of catalytic precursor[J]. Applied Catalysis A:General, 2011, 408(1/2):78-86. [45] OSORIO-VARGAS P, FLORES-GONZALEZ N A, NAVARRO R M, et al. Improved stability of Ni/Al2O3, catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction[J]. Catalysis Today, 2015, 259:27-38. [46] CAMPOS C H, OSORIO-VARGAS P, FLORES-GONZALEZ N, et al. Effect of Ni loading on lanthanide(La and Ce) promoted γ-Al2O3, catalysts applied to ethanol steam reforming[J]. Catalysis Letters, 2016, 146(2):433-441. [47] 吴倩,陈豪慧,李佟茗. 稀土金属氧化物在乙醇重整制氢催化剂中的应用[J]. 化工进展, 2008, 27(2):187-189. WU Qian, CHEN Haohui, LI Tongming. Application of rare earth metal in steam reforming of ethanol[J]. Chemical Industry and Engineering Progress, 2008, 27(2):187-189. [48] LI D, ZENG L, LI X, et al. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation[J]. Applied Catalysis B:Environmental, 2015, 176/177:532-541. [49] SENANAYAKE S D, RODRIGUEZ J A, STACCHIOLA D. Electronic metal-support interactions and the production of hydrogen through the water-gas shift reaction and ethanol steam reforming:fundamental studies with well-defined model catalysts[J]. Topics in Catalysis, 2013, 56(15):1488-1498. [50] MORAWETZ C S, LUDWIG D. In situ and theoretical studies for the dissociation of water on an active Ni/CeO2, catalyst:importance of strong metal-support interactions for the cleavage of O-H bonds[J]. Angewandte Chemie, 2015, 54(13):3917-3921. [51] ZHOU G, BARRIO L, AGNOLI S, et al. High activity of Ce1-xNixO2-y for H2 production through ethanol steam reforming:tuning catalytic performance through metal-oxide interactions[J]. Angewandte Chemie, 2010, 49(50):9680-9684. [52] LIU Z, XU W, YAO S, et al. Superior performance of Ni-W-Ce mixed-metal oxide catalysts for ethanol steam reforming:synergistic effects of W-and Ni-dopants[J]. Journal of Catalysis, 2014, 321:90-99. [53] LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic steam reforming of ethanol over high surface area CeO2:The role of CeO2, as an internal pre-reforming catalyst[J]. Applied Catalysis B:Environmental, 2006, 66(1/2):29-39. [54] SÁNCHEZ-SÁNCHEZ M C, NAVARRO R M, FIERRO J L G. Ethanol steam reforming over Ni/La-Al2O3, catalysts:influence of lanthanum loading[J]. Catalysis Today, 2007, 129(3/4):336-345. [55] RAMÍREZ-HERNÁNDEZ G Y, VIVEROS-GARCÍA T, FUENTES-RAMÍREZ R, et al. Promoting behavior of yttrium over nickel supported on alumina-yttria catalysts in the ethanol steam reforming reaction[J]. International Journal of Hydrogen Energy, 2016, 41(22):9332-9343. [56] FRUSTERI F, FRENI S, CHIODO V, et al. Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC[J]. Journal of Power Sources, 2004, 132(1):139-144. [57] RASS-HANSEN J, CHRISTENSEN C H, SEHESTED J, et al. Renewable hydrogen:carbon formation on Ni and Ru catalysts during ethanol steam-reforming[J]. Green Chemistry, 2007, 9(9):1016-1021. [58] DENIS A, GRZEGORCZYK W, GAC W, et al. Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications[J]. Catalysis Today, 2008, 137(2):453-459. [59] CHOONG C K S,ZHONG Z,LIN H,et al. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3:Ⅰ.Catalytic stability, electronic properties and coking mechanism[J]. Applied Catalysis A:General, 2011, 407(1/2):145-154. [60] CHOONG C K S, HUANG L, ZHONG Z, et al. Effect of calcium addition on catalytic ethanol steam reforming of Ni/Al2O3:Ⅱ.Acidity/basicity, water adsorption and catalytic activity[J]. Applied Catalysis A:General, 2011, 407(1):155-162. [61] SONG J H, HAN S J, YOO J, et al. Effect of Sr content on hydrogen production by steam reforming of ethanol over Ni-Sr/Al2O3-ZrO2, xerogel catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2016, 418/419:68-77. [62] SANCHEZ-SANCHEZ M C, NAVARRO R M, ESPARTERO I, et al. Role of Pt in the activity and stability of PtNi/CeO2-Al2O3 catalysts in ethanol steam reforming for H2 production[J]. Topics in Catalysis, 2013, 56:1672-1685. [63] ROGATIS L D, MONTINI T, LORENZUT B, et al. NixCuy/Al2O3 based catalysts for hydrogen production[J]. Energy & Environmental Science, 2008, 1(4):501-509. [64] LORENZUT B, MONTINI T, ROGATIS L D, et al. Hydrogen production through alcohol steam reforming on Cu/ZnO-based catalysts[J]. Applied Catalysis B:Environmental, 2011, 101(3/4):397-408. [65] CHEN L C, LIN S D. The ethanol steam reforming over Cu-Ni/SiO2, catalysts:effect of Cu/Ni ratio[J]. Applied Catalysis B:Environmental, 2011, 106(3/4):639-649. [66] ANJANEYULU C, COSTA L O O D, RIBEIRO M C, et al. Effect of Zn addition on the performance of Ni/Al2O3, catalyst for steam reforming of ethanol[J]. Applied Catalysis A:General, 2016, 519(5):85-98. [67] CARRERO A, CALLES J A, VIZCAÍNO A J. Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15 supported catalysts prepared by direct synthesis and impregnation[J]. Applied Catalysis A:General, 2007, 327(1):82-94. [68] LINDO M, VIZCAÍNO A J, CALLES J A, et al. Ethanol steam reforming on Ni/Al-SBA-15 catalysts:effect of the aluminium content[J]. International Journal of Hydrogen Energy, 2010, 35(11):5895-5901. [69] LI M, WANG X, LI S, et al. Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds[J]. International Journal of Hydrogen Energy, 2010, 35(13):6699-6708. [70] GU R, ZENG G, SHAO J, et al. Sustainable H2, production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith[J]. Frontiers of Chemical Science and Engineering, 2013, 7(3):270-278. [71] LIN L, ZHOU W, GAO R, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648):80. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[3] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[4] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[5] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[6] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[7] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[8] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[9] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[10] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[11] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[12] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[13] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[14] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[15] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |