Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (11): 6061-6070.DOI: 10.16085/j.issn.1000-6613.2020-2341
• Energy processes and technology • Previous Articles Next Articles
YANG Qingchun1,2(), YANG Qing1(), ZHANG Jinliang1, GAO Minglin2, MEI Shumei2, ZHANG Dawei1()
Received:
2020-11-23
Revised:
2020-12-20
Online:
2021-11-19
Published:
2021-11-05
Contact:
ZHANG Dawei
杨庆春1,2(), 杨庆1(), 张金亮1, 高明林2, 梅树美2, 张大伟1()
通讯作者:
张大伟
作者简介:
基金资助:
CLC Number:
YANG Qingchun, YANG Qing, ZHANG Jinliang, GAO Minglin, MEI Shumei, ZHANG Dawei. Development and system assessment of a coal-to-ethylene glycol process coupled with SOEC[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6061-6070.
杨庆春, 杨庆, 张金亮, 高明林, 梅树美, 张大伟. 耦合SOEC的煤制乙二醇新工艺开发与系统评价[J]. 化工进展, 2021, 40(11): 6061-6070.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2341
参数 | 取值[ | 参数 | 取值[ |
---|---|---|---|
操作温度/K | 1073 | 电池作用面积A/m2 | 0.04 |
操作压力/MPa | 0.1 | 电池总数Ncell | 500 |
阴极入口气体组分(摩尔分数) | H2O 90%,H2 10% | 孔隙平均半径Dpor/m | 0.5×10-6 |
蒸汽利用因子 | 85% | 孔隙率/% | 0.3 |
阳极内部气体O2/N2摩尔比 | 0.21/0.79 | 弯曲度 | 6 |
阳极活化能Eact,a/J·mol-1 | 1.2×105 | 阳极电极厚度δa/m | 17.5×10-6 |
阴极活化能Eact,c/J·mol-1 | 1.0×105 | 阴极电极厚度δc/m | 12.5×10-6 |
阳极指前因子γa | 2.051×108 | 电解质层厚度δe/m | 12.5×10-6 |
阴极指前因子γc | 1.344×1010 |
参数 | 取值[ | 参数 | 取值[ |
---|---|---|---|
操作温度/K | 1073 | 电池作用面积A/m2 | 0.04 |
操作压力/MPa | 0.1 | 电池总数Ncell | 500 |
阴极入口气体组分(摩尔分数) | H2O 90%,H2 10% | 孔隙平均半径Dpor/m | 0.5×10-6 |
蒸汽利用因子 | 85% | 孔隙率/% | 0.3 |
阳极内部气体O2/N2摩尔比 | 0.21/0.79 | 弯曲度 | 6 |
阳极活化能Eact,a/J·mol-1 | 1.2×105 | 阳极电极厚度δa/m | 17.5×10-6 |
阴极活化能Eact,c/J·mol-1 | 1.0×105 | 阴极电极厚度δc/m | 12.5×10-6 |
阳极指前因子γa | 2.051×108 | 电解质层厚度δe/m | 12.5×10-6 |
阴极指前因子γc | 1.344×1010 |
项目 | 来源 | CtEG | SO-CtEG |
---|---|---|---|
输入?/MW | 原煤 | 1111.8 | 514.1 |
公用工程 | 211.2 | 377.7 | |
总输入 | 1323.0 | 891.8 | |
输出?/MW | 乙二醇 | 405.9 | 405.9 |
?效率/% | 30.68 | 45.50 |
项目 | 来源 | CtEG | SO-CtEG |
---|---|---|---|
输入?/MW | 原煤 | 1111.8 | 514.1 |
公用工程 | 211.2 | 377.7 | |
总输入 | 1323.0 | 891.8 | |
输出?/MW | 乙二醇 | 405.9 | 405.9 |
?效率/% | 30.68 | 45.50 |
1 | 杨鹏举, 刘道勇, 时鹏. 煤制乙二醇装置运行效果及市场前景分析[J]. 河南化工, 2019, 36(7): 7-9. |
YANG Pengju, LIU Daoyong, SHI Peng. Operation and market analysis of coal-to-ethylene glycol plant[J]. Henan Chemical Industry, 2019, 36(7): 7-9. | |
2 | YANG Q C, ZHU S, YANG Q, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814. |
3 | 黄格省, 李振宇, 王建明. 我国现代煤化工产业发展现状及对石油化工产业的影响[J]. 化工进展, 2015, 34(2): 295-302. |
HUANG Gesheng, LI Zhenyu, WANG Jianming. Development status of coal chemical industry in China and its influence on petrochemical industry[J]. Chemical Industry and Engineering Progress, 2015, 34(2): 295-302. | |
4 | 黄格省, 阎捷, 师晓玉, 等. 新能源制氢技术发展现状及前景分析[J]. 石化技术与应用, 2019, 37(5): 289-296. |
HUANG Gesheng, YAN Jie, SHI Xiaoyu, et al. Development status and prospect analysis of hydrogen production with new energy technology[J]. Petrochemical Technology & Application, 2019, 37(5): 289-296. | |
5 | KIM J, JUN A, GWON O, et al. Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production[J]. Nano Energy, 2018, 44: 121-126. |
6 | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
YANG Qing, XU Simin, ZHANG Dawei, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
7 | YANG Q C, ZHANG D W, ZHOU H R, et al. Process simulation, analysis and optimization of a coal to ethylene glycol process[J]. Energy, 2018, 155: 521-534. |
8 | 朱顺, 郭琦, 张大伟, 等. 集成CO2高效利用的煤制乙二醇过程设计与系统分析[J]. 化工学报, 2019, 70(2): 772-779. |
ZHU Shun, GUO Qi, ZHANG Dawei, et al. Conceptual design and system analysis coal to ethylene glycol process integrated with efficient utilization of CO2[J]. CIESC Journal, 2019, 70(2): 772-779. | |
9 | YANG Q C, LIU X, ZHU S, et al. Efficient utilization of CO2 in a coal to ethylene glycol process integrated with dry/steam-mixed reforming: conceptual design and technoeconomic analysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3496-3510. |
10 | YUE H R, ZHAO Y J, MA X B, et al. Ethylene glycol: properties, synthesis, and applications[J]. Chemical Society Reviews, 2012, 41(11): 4218. |
11 | QIAN Y, MAN Y, PENG L J, et al. Integrated process of coke-oven gas tri-reforming and coal gasification to methanol with high carbon utilization and energy efficiency[J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2519-2525. |
12 | SUN S C, SHAO Z G, YU H M, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack[J]. Journal of Power Sources, 2014, 267: 515-520. |
13 | PERNA A, MINUTILLO M, JANNELLI E. Hydrogen from intermittent renewable energy sources as gasification medium in integrated waste gasification combined cycle power plants: a performance comparison[J]. Energy, 2016, 94: 457-465. |
14 | IM-ORB K, VISITDUMRONGKUL N, SAEBEA D, et al. Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production[J]. Journal of Cleaner Production, 2018, 170: 1-13. |
15 | HAJJAJI N, PONS M N, HOUAS A, et al. Exergy analysis: an efficient tool for understanding and improving hydrogen production via the steam methane reforming process[J]. Energy Policy, 2012, 42: 392-399. |
16 | LEI L B, ZHANG J H, YUAN Z H, et al. Progress report on proton conducting solid oxide electrolysis cells[J]. Advanced Functional Materials, 2019, 29(37): 1903805. |
17 | ZHANG H F, DESIDERI U. Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers[J]. Energy, 2020, 199: 117498. |
18 | ZHANG H F, WANG L G, HERLE J VAN, et al. Techno-economic comparison of green ammonia production processes[J]. Applied Energy, 2020, 259: 114135. |
19 | ZHANG H F, WANG L G, HERLE J VAN, et al. Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer[J]. Applied Energy, 2020, 270: 115113. |
20 | CINTI G, BALDINELLI A, DI MICHELE A, et al. Integration of solid oxide electrolyzer and Fischer-Tropsch: a sustainable pathway for synthetic fuel[J]. Applied Energy, 2016, 162: 308-320. |
21 | ALI S, SØRENSEN K, NIELSEN M P. Modeling a novel combined solid oxide electrolysis cell (SOEC)-biomass gasification renewable methanol production system[J]. Renewable Energy, 2020, 154: 1025-1034. |
22 | GIGLIO E, LANZINI A, SANTARELLI M, et al. Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part II—Economic analysis[J]. Journal of Energy Storage, 2015, 2: 64-79. |
23 | YANG Q, YANG Q C, XU S M, et al. Technoeconomic and environmental analysis of ethylene glycol production from coal and natural gas compared with oil-based production[J]. Journal of Cleaner Production, 2020, 273: 123120. |
24 | CARNEIRO J, GU X K, TEZEL E, et al. Electrochemical reduction of CO2 on metal-based cathode electrocatalysts of solid oxide electrolysis cells[J]. Industrial & Engineering Chemistry Research, 2020, 59(36): 15884-15893. |
25 | ZHANG H C, SU S H, CHEN X H, et al. Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(11): 4298-4307. |
26 | LONIS F, TOLA V, CAU G. Renewable methanol production and use through reversible solid oxide cells and recycled CO2 hydrogenation[J]. Fuel, 2019, 246: 500-515. |
27 | ZHANG W, CROISET E, DOUGLAS P L, et al. Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models[J]. Energy Conversion and Management, 2005, 46(2): 181-196. |
28 | CLAUSEN L R, BUTERA G, JENSEN S H. High efficiency SNG production from biomass and electricity by integrating gasification with pressurized solid oxide electrolysis cells[J]. Energy, 2019, 172: 1117-1131. |
29 | YI Q, FENG J, LI W Y. Optimization and efficiency analysis of polygeneration system with coke-oven gas and coal gasified gas by Aspen Plus[J]. Fuel, 2012, 96: 131-140. |
30 | XIANG D, XIANG J J, SUN Z, et al. The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization[J]. Energy, 2017, 140: 78-91. |
31 | ALBRECHT F G, KÖNIG D H, BAUCKS N, et al. A standardized methodology for the techno-economic evaluation of alternative fuels—A case study[J]. Fuel, 2017, 194: 511-526. |
32 | ANGHILANTE R, COLOMAR D, BRISSE A, et al. Bottom-up cost evaluation of SOEC systems in the range of 10-100MW[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20309-20322. |
33 | LIN M, HAUSSENER S. Techno-economic modeling and optimization of solar-driven high-temperature electrolysis systems[J]. Solar Energy, 2017, 155: 1389-1402. |
34 | 国家能源局. 2020年光伏电价新政落地分布式补贴下调超五成[EB/OL]. , 2020-04-08. |
National Energy Administration. The new policy of photovoltaic power price will be implemented and the distributed subsidy will be reduced by more than 50% in 2020[EB/OL]. , 2020-04-08. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[5] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[6] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[7] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[8] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[9] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[10] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[11] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[12] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[13] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[14] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[15] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |