Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1456-1468.DOI: 10.16085/j.issn.1000-6613.2020-0770
• Materials science and technology • Previous Articles Next Articles
GUO Qijing1(), ZHAN Weiquan1, WANG Qingmiao2, JIA Feifei1(), SONG Shaoxian1
Received:
2020-05-09
Online:
2021-03-17
Published:
2021-03-05
Contact:
JIA Feifei
郭其景1(), 詹伟泉1, 王清淼2, 贾菲菲1(), 宋少先1
通讯作者:
贾菲菲
作者简介:
郭其景(1996—),女,硕士研究生,研究方向为太阳能海水淡化。E-mail:基金资助:
CLC Number:
GUO Qijing, ZHAN Weiquan, WANG Qingmiao, JIA Feifei, SONG Shaoxian. Research progress of molybdenum disulfide as a material for seawater desalination[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1456-1468.
郭其景, 詹伟泉, 王清淼, 贾菲菲, 宋少先. 二硫化钼作为海水淡化材料的研究进展[J]. 化工进展, 2021, 40(3): 1456-1468.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0770
材料 | NaCl溶液浓度 | 应用电压 /V | 最大电吸附容量 /mg·g-1 | 离子质量去除能力 /mg·g-1 | 离子体积去除能力 /mg·cm-3 | 比电容/F·g-1 | 参考 文献 |
---|---|---|---|---|---|---|---|
MoS2 | 100mg·L-1 | 0.8 | 12.8 | 8.8 | 74.22(5mV·s-1) | [ | |
MoS2 | 200mg·L-1 | 1.2 | 10.97 | 9.79 | 75(1mol·L-1 NaCl,10mV·s-1) | [ | |
MoS2/PDA | 200mg·L-1 | 1.2 | 16.94 | 14.8 | 99.9(1mol·L-1 NaCl,10mV·s-1) | [ | |
热处理MoS2 | 100mg·L-1 | 0.8 | 35 | 24.6 | 221.35(5mV·s-1) | ||
ce-MoS2纳米片 | 400mmol·L-1 | 1.2 | 8.81 | 16.51 | 109.7(1mol·L-1 NaCl,10mV·s-1) | [ | |
MoS2/rGO | 200mg·L-1 | 1.0 | 19.06 | 16.82 | 198.6(1A·g-1的电流密度下) | [ | |
MoS2/碳纳米管 | 5mmol·L-1 25mmol·L-1 100mmol·L-1 500mmol·L-1 | 0.8 | 10 13 18 25 | 40 65 90 125 | 正电极极化200 负电极极化210 (1mol·L-1 NaCl,5mV·s-1) | [ | |
MoS2/石墨烯 | 500mg·L-1 | 1.2 | 19.4 | 14.3 | 146.1(0.5mol·L-1 NaCl,5mV·s-1) 47.9(0.5mol·L-1 NaCl,50mV·s-1) | [ | |
MoS2/g-C3N4电极 | 250mg·L-1 | 1.6 | 24.5 | 24.16 | 118.3F·g-1(1A·g-1) 61.7F·g-1(10A·g-1) | [ |
材料 | NaCl溶液浓度 | 应用电压 /V | 最大电吸附容量 /mg·g-1 | 离子质量去除能力 /mg·g-1 | 离子体积去除能力 /mg·cm-3 | 比电容/F·g-1 | 参考 文献 |
---|---|---|---|---|---|---|---|
MoS2 | 100mg·L-1 | 0.8 | 12.8 | 8.8 | 74.22(5mV·s-1) | [ | |
MoS2 | 200mg·L-1 | 1.2 | 10.97 | 9.79 | 75(1mol·L-1 NaCl,10mV·s-1) | [ | |
MoS2/PDA | 200mg·L-1 | 1.2 | 16.94 | 14.8 | 99.9(1mol·L-1 NaCl,10mV·s-1) | [ | |
热处理MoS2 | 100mg·L-1 | 0.8 | 35 | 24.6 | 221.35(5mV·s-1) | ||
ce-MoS2纳米片 | 400mmol·L-1 | 1.2 | 8.81 | 16.51 | 109.7(1mol·L-1 NaCl,10mV·s-1) | [ | |
MoS2/rGO | 200mg·L-1 | 1.0 | 19.06 | 16.82 | 198.6(1A·g-1的电流密度下) | [ | |
MoS2/碳纳米管 | 5mmol·L-1 25mmol·L-1 100mmol·L-1 500mmol·L-1 | 0.8 | 10 13 18 25 | 40 65 90 125 | 正电极极化200 负电极极化210 (1mol·L-1 NaCl,5mV·s-1) | [ | |
MoS2/石墨烯 | 500mg·L-1 | 1.2 | 19.4 | 14.3 | 146.1(0.5mol·L-1 NaCl,5mV·s-1) 47.9(0.5mol·L-1 NaCl,50mV·s-1) | [ | |
MoS2/g-C3N4电极 | 250mg·L-1 | 1.6 | 24.5 | 24.16 | 118.3F·g-1(1A·g-1) 61.7F·g-1(10A·g-1) | [ |
分类 | 材料形态 | 光热材料 | 光照强度 /kW·m-2 | 蒸发速率 /kg·m-2·h-1 | 蒸发效率 /% | 光吸收率/% | 参考 文献 |
---|---|---|---|---|---|---|---|
界面蒸发系统 | 光热膜 | SWNT/MoS2复合膜 | 5 | 大气6.6 真空15.6 | 91.5 | 82 | [ |
MoS2/GF膜 | 1 | 1.85 | 94 | [ | |||
双层结构 | MoS2/棉布基质+EPS(PMoS2-CC) | 1 5 | 1.3 7.03 | 80.1 90.3 | >90(200~2000nm) >80(2000~2500nm) | [ | |
MoS2/海绵双层结构 | 1 1.5~2.5 | 1.204 1.9~3.36 | 86.2 >90 | [ | |||
MoS2/C@PU+EPS | 1 | 1.95 | 98(500~2000nm) | [ | |||
2H-MoS2凹膜+EPS | 1 3 | 1.68±0.08 4.5 | 83.8±0.8 91.5±1.1 | [ | |||
MoS2 /无尘纸/EPE | 1 2 5 | 1.27 1.95 5.90 | 80 61 67 | [ | |||
气凝胶 | MoS2气凝胶 | 1 1.5 2 3 | 1.36 2.16 2.97 4.56 | 85.4 90.1 93.0 95.3 | 95(200~2500nm) | [ | |
ce-MoS2 /BNC双层气凝胶 | 0.76 5.35 | 0.81 6.15 | 75.7 81.4 | [ | |||
体积蒸发系统 | 磁流体 | 磁性MoS2纳米片 (1.0g·L-1) | 1 1.5 2 2.5 | 1 1.69 2.39 3.16 | 62.46 70.77 75.00 79.20 | 96(200~2500nm) | [ |
分类 | 材料形态 | 光热材料 | 光照强度 /kW·m-2 | 蒸发速率 /kg·m-2·h-1 | 蒸发效率 /% | 光吸收率/% | 参考 文献 |
---|---|---|---|---|---|---|---|
界面蒸发系统 | 光热膜 | SWNT/MoS2复合膜 | 5 | 大气6.6 真空15.6 | 91.5 | 82 | [ |
MoS2/GF膜 | 1 | 1.85 | 94 | [ | |||
双层结构 | MoS2/棉布基质+EPS(PMoS2-CC) | 1 5 | 1.3 7.03 | 80.1 90.3 | >90(200~2000nm) >80(2000~2500nm) | [ | |
MoS2/海绵双层结构 | 1 1.5~2.5 | 1.204 1.9~3.36 | 86.2 >90 | [ | |||
MoS2/C@PU+EPS | 1 | 1.95 | 98(500~2000nm) | [ | |||
2H-MoS2凹膜+EPS | 1 3 | 1.68±0.08 4.5 | 83.8±0.8 91.5±1.1 | [ | |||
MoS2 /无尘纸/EPE | 1 2 5 | 1.27 1.95 5.90 | 80 61 67 | [ | |||
气凝胶 | MoS2气凝胶 | 1 1.5 2 3 | 1.36 2.16 2.97 4.56 | 85.4 90.1 93.0 95.3 | 95(200~2500nm) | [ | |
ce-MoS2 /BNC双层气凝胶 | 0.76 5.35 | 0.81 6.15 | 75.7 81.4 | [ | |||
体积蒸发系统 | 磁流体 | 磁性MoS2纳米片 (1.0g·L-1) | 1 1.5 2 2.5 | 1 1.69 2.39 3.16 | 62.46 70.77 75.00 79.20 | 96(200~2500nm) | [ |
1 | 彭珂珊. 21世纪中国水资源危机[J]. 水利水电科技进展, 2000, 20(5): 13-16. |
PENG Keshan. China water resource crisis in the 21th century[J]. Advances in Science and Technology of Water Resources, 2000, 20(5): 13-16. | |
2 | Gary AMY, GHAFFOUR Noreddine, LI Zhenyu, et al. Membrane-based seawater desalination: present and future prospects[J]. Desalination, 2016, 401: 16-21. |
3 | GAMBLER Adrian, BADREDDIN Essameddin. Dynamic modelling of MSF plants for automatic control and simulation purposes: a survey[J]. Desalination, 2004, 166: 191-204. |
4 | SAYYAADI Hoseyn, SAFFARI Arash. Thermoeconomic optimization of multi effect distillation desalination systems[J]. Applied Energy, 2010, 87(4): 1122-1133. |
5 | ZHOU Jianguo, SUN Zhenlong, CHEN Mingqi, et al. Macroscopic and mechanically robust hollow carbon spheres with superior oil adsorption and light-to-heat evaporation properties[J]. Advanced Functional Materials, 2016, 26(29): 5368-5375. |
6 | LIU Zhejun, SONG Haomin, JI Dengxin, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J]. Global Challenges, 2017, 1(2): 1600003. |
7 | YANG Yang, ZHAO Ruiqi, ZHANG Tengfei, et al. Graphene-based standalone solar energy converter for water desalination and purification[J]. ACS Nano, 2018, 12(1): 829-835. |
8 | HU Xiaozhen, XU Weichao, ZHOU Lin, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials, 2017, 29(5): 1604031. |
9 | Donghan SEO, PINEDA Shafique, Yunchul WOO, et al. Anti-fouling graphene-based membranes for effective water desalination[J]. Nature Communications, 2018, 9(1): 683. |
10 | DONG Yingchao, MA Lining, TANG Chuyang, et al. Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes[J]. Nano Letters, 2018, 18(9): 5514-5521. |
11 | SHAO Yue, JIANG Zhiping, ZHANG Yunjing, et al. All-poly(ionic liquid) membrane-derived porous carbon membranes: scalable synthesis and application for photothermal conversion in seawater desalination[J]. ACS Nano, 2018, 12(11): 11704-11710. |
12 | Che Ning YEH, RAIDONGIA Kalyan, SHAO Jiaojing, et al. On the origin of the stability of graphene oxide membranes in water[J]. Nature Chemistry, 2015, 7(2): 166-170. |
13 | JOSHI R K, CARBONE P, WANG F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
14 | YANG Lei, ZHONG Ding, ZHANG Jingyu, et al. Optical properties of metal-molybdenum disulfide hybrid nanosheets and their application for enhanced photocatalytic hydrogen evolution[J]. ACS Nano, 2014, 8(7): 6979-6985. |
15 | CAO Linyou, YU Yifei, HUANG Shengyang, et al. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution[J]. Nano Letters, 2014, 14(2): 553-558. |
16 | WU Jinzhu, LI Beibei, FENG Yaxiu, et al. Silicon quantum dot-assisted synthesis of MoS2/rGO sandwich structures with excellent supercapacitive performance[J]. New Journal of Chemistry, 2019, 43(22): 8660-8668. |
17 | YANG M H, JEONG J M, HUH Y S, et al. High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites[J]. Composites Science & Technology, 2015, 121: 123-128. |
18 | PERKINS F K, FRIEDMAN A L, COBAS E, et al. Chemical vapor sensing with mono layer MoS2[J]. Nano Letters, 2013, 13(2): 668-673. |
19 | SARKAR Depanjan, MONDAL Biswajit, Anirban SOM, et al. Holey MoS2 nanosheets with photocatalytic metal rich edges by ambient electrospray deposition for solar water disinfection[J]. Global Challenges, 2018, 2(12): 1800052. |
20 | ZHAN Weiquan, YUAN Yuan, YANG Bingqiao, et al. Construction of MoS2 nano-heterojunction via ZnS doping for enhancing in-situ photocatalytic reduction of gold thiosulfate complex[J]. Chemical Engineering Journal, 2020, 394: 124866-124875. |
21 | YIN Huajie, ZHAO Shenlong, WAN Jiawei, et al. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water[J]. Advanced Materials, 2013, 25(43): 6270-6276. |
22 | ZHANG Jing, FANG Jianhui, HAN Jinlong, et al. N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J]. Materials for Energy and Sustainability, 2018, 6(31): 15245-15252. |
23 | TANG Wangwang, KOVALSKY Peter, CAO BAichuan, et al. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization[J]. Water Research, 2016, 99: 112-121. |
24 | ZHANG Changyong, HE Di, MA Jinxing, et al. Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: a review[J]. Water Research, 2018, 128: 314-330. |
25 | HEMMATIFAR Ali, PALKO James W, STADERMANN Michael, et al. Energy breakdown in capacitive deionization[J]. Water Research, 2016, 104: 303-311. |
26 | ACERCE Muharrem, VOIRY Damine, CHHOWALLA Manishi. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4): 313-318. |
27 | JIA Feifei, SUN Kaige, YANG Bingqiao, et al. Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water[J]. Desalination, 2018, 446: 21-30. |
28 | WANG Qingmiao, JIA Feifei, SONG Shaoxian, et al. Hydrophilic MoS2/polydopamine (PDA) nanocomposites as the electrode for enhanced capacitive deionization[J]. Separation and Purification Technology, 2020, 236: 116298-116306. |
29 | XING Fei, LI Tao, LI Junye, et al. Chemically exfoliated MoS2 for capacitive deionization of saline water[J]. Nano Energy, 2017, 31: 590-595. |
30 | HUANG Kejing, WANG Lan, LIU Yujie, et al. Layered MoS2-graphene composites for supercapacitor applications with enhanced capacitive performance[J]. International Journal of Hydrogen Energy, 2013, 38(32): 14027-14034. |
31 | DAVID Lamuel, BHANDAVAT Romil, SINGH Gurpreet. MoS2/graphene composite paper for sodium-ion battery electrodese[J]. ACS Nano, 2014, 8(2): 1759-1770. |
32 | PENG Weijun, WANG Wei, HAN Guihong, et al. Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization[J]. Desalination, 2020, 473: 114191. |
33 | SRIMUK Pattarachai, Juhan LEE, FLEISCHMANN Simon, et al. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide[J]. Journal of Materials Chemistry A, 2017, 5(30): 15640-15649. |
34 | HAN Jinlong, YAN Tingting, SHEN Junjie, et al. Capacitive deionization of saline water by using MoS2-graphene hybrid electrodes with high volumetric adsorption capacity[J]. Environmental Science & Technology, 2019, 53(21): 12668-12676. |
35 | TIAN Shichao, ZHANG Xihui, ZHANG Zhenghua. Capacitive deionization with MoS2/g-C3N4 electrodes[J]. Desalination, 2020, 479: 114348. |
36 | WANG Zhongying, MI Baoxia. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technolog, 2017, 51(15): 8229-8244. |
37 | WANG Zhongying, TU Qingsong, ZHENG Sunxiang, et al. Understanding aqueous stability and filtration capability of moS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298. |
38 | HEIRANIAN Mohammad, FARIMANI Amir Barati, ALURU Narayana R. Water desalination with a single-layer MoS2 nanopore[J]. Scientific Reports, 2015, 6: 8616. |
39 | LARSON R E, CADOTTE J E, PETERSEN R J. The FT-30 seawater reverse osmosis membrane—element test results[J]. Desalination, 1981, 38: 473-483. |
40 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
41 | BERTOLAZZI Simone, BRIVIO Jacopo, Andras KIS. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709. |
42 | LI Weifeng, YANG Yanmei, JEFFREY K, et al. Tunable, strain-controlled nanoporous MoS2 filter for water desalination[J]. ACS nano, 2016, 10(2): 1829-1835. |
43 | KOU Jianlong, YAO Jun, WU Lili, et al. Nanoporous two-dimensional MoS2 membranes for fast saline solution purification[J]. Physical Chemistry Chemical Physics, 2016, 18(32): 22210-22216. |
44 | LIU Yunhui, BO Wang, LI Ersong, et al. The preparation of a strawberry-like super-hydrophilic surface on the molybdenum substrate[J]. Colloids & Surfaces A, 2012, 404: 52-55. |
45 | LI Hao, Taejun KO, Myeongsang LEE, et al. Experimental realization of few layer 2D MoS2 membranes of near atomic thickness for high efficiency water desalination[J]. Nano Letters, 2019, 19(8): 5194-5204. |
46 | ZHANG Chao, HU Dengfeng, XU Jingwei, et al. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity[J]. ACS Nano, 2018, 12(12): 12347-12356. |
47 | ABDIKHEIBARI Sara, LEI Weiwei, DUMEE Ludovic F, et al. Novel thin film nanocomposite membranes decorated with few-layered boron nitride nanosheets for simultaneously enhanced water flux and organic fouling resistance[J]. Applied Surface Science, 2019, 488: 565-577. |
48 | LI Yi, YANG Shishi, ZHANG Kaisong, et al. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics[J]. Desalination, 2019, 454: 48-58. |
49 | HILAL N, AL-ZOUBI H, DARWISH N A, et al. A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy[J]. Desalination, 2004, 170(3): 281-308. |
50 | MOHAMMAD A W, TEOW Y H, ANG W L, et al. Nanofiltration membranes review: recent advances and future prospects[J]. Desalination, 2015, 356: 226-254. |
51 | ZHANG Hao, TAYMAZOV Dovletjan, LI Mengping, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019, 592: 117369. |
52 | HIRUNPIN Wisit, PRESTAT Eric, WORRALL Stephen D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11): 11082-11090. |
53 | ZHAO Dieling, CHEN Shucheng, WANG Peng, et al. A dendrimer-based forward osmosis draw solute for seawater desalination[J]. Industrial Engineering Chemistry Research, 2014, 53(42): 16170-16175. |
54 | Nhu Ngoc BUI, MCCUTCHEON Jeffrey R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis[J]. Environmental Science & Technology, 2012, 47(3): 1761-1769. |
55 | LIU Caihong, Jongho LEE, MA Jun, et al. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer[J]. Environmental Science & Technology, 2017, 51(4): 2161-2169. |
56 | LI Mengna, SUN Xuefei, WANG Lin, et al. Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties[J]. Desalination, 2018, 436: 107-113. |
57 | HEDAYATI Mehdi Keshavarz, ABDELAZIZ Moheb, ETRICH Christoph, et al. Broadband anti-reflective coating based on plasmonic nanocomposite[J]. Materials, 2016, 9(8): 636. |
58 | HEDAYATI Mehdi Keshavarz, ELBAHRI Mady. Antireflective coatings: conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review[J]. Materials, 2016, 9(6): 497. |
59 | CAI Jinguang, QI Limin. Recent advances in antireflective surfaces based on nanostructure arrays[J]. Materials Horizons, 2015, 2(1): 37-53. |
60 | Youngshin JUN, WU Xuanhao, GHIM Deoukchen, et al. Photothermal membrane water treatment for two worlds[J]. Accounts of Chemical Research, 2019, 52(5): 1215-1225. |
61 | WANG Peng. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight[J]. Environmental Science: Nano, 2018, 5(5): 1078-1089. |
62 | ZHU Liangliang, GAO Minmin, Connor Kang Nuo PEH. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications[J]. Materials Horizons, 2018, 5(3): 323-343. |
63 | GAO Minmin, ZHU Liangliang, Connor Kangnuo PEH, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science, 2019, 12(3): 841-864. |
64 | ZHANG Gang, ZHANG Yongwei. Thermal properties of two-dimensional materials[J]. Chinese Physics B, 2017, 23(3): 034401. |
65 | ZHANG Lianbin, TANG Bo, WU Jinbo, et al. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating[J]. Advanced Materials, 2015, 27(33): 4889-4894. |
66 | YANG Xiangdong, YANG Yanbing, FU Linna, et al. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials, 2017, 28(3): 1704505. |
67 | 常宇虹. 纳米过渡金属氧族化合物的太阳能光热蒸汽转化研究[D]. 济南: 山东大学, 2019. |
CHANG Yuhong. Nano transition metal chalcogen compounds for solar steam generation[D]. Jinan: Shandong University, 2019. | |
68 | WANG Qingmiao, JIA Feifei, HUANG Anhua, et al. MoS2@sponge with double layer structure for high-efficiency solar desalination[J]. Desalination, 2020, 481: 114359-114365. |
69 | GUO Zhenzhen, WANG Gang, MING Xin, et al. PEGylated self-growth MoS2 on cotton cloth substrate for high-efficiency solar energy utilization[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24583-24589. |
70 | WANG Qingmiao, GUO Qijing, JIA Feifei, et al. Facile preparation of 3D MoS2 aerogels for highly efficient solar desalination[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32673-32680. |
71 | GHIM Deoukchen, JIANG Qisheng, CAO Sisi, et al. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification[J]. Nano Energy, 2018, 53: 949-957. |
72 | VRIJENHOEK Eric M, HONG Seungkwan, ELIMELECH Menachem. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 2001, 188(1): 115-128. |
73 | JIANG Qisheng, TIAN Limei, LIU Kengku, et al. Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials, 2016, 28(42): 9400-9407. |
74 | YU Shengtao, ZHANG Yao, DUAN Haoze, et al. The impact of surface chemistry on the performance of localized solar-driven evaporation system[J]. Scientific reports, 2015, 5: 13600. |
75 | LI Xiuqiang, XU Weichao, TANG Mingyao, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 13953-13958. |
76 | CHEN Rong, WANG Xun, GAN Qimao, et al. A bifunctional MoS2-based solar evaporator for both efficient water evaporation and clean freshwater collection[J]. Journal of Materials Chemistry A, 2019, 7(18): 11177-11185. |
77 | ZHANG Lei, MU Li, ZHOU Qixing, et al. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination[J]. Water Research, 2020, 170: 115367. |
78 | LI Weigu, TEKELL Marshall C, HUANG Yun, et al. Synergistic high-rate solar steaming and mercury removal with MoS2/C@polyurethane composite sponges[J]. Advanced Energy Materials, 2018, 8(32): 1802108. |
79 | WANG Qingmiao, QIN Yi, JIA Feifei, et al. Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation[J]. Renewable Energy, 2020, 163: 146-153. |
[1] | QIN Jian, LIU Tianxia, WANG Jian, LU Xing. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. |
[2] | ZHENG Anda, YANG Chenggong, WANG Dong’e, TIAN Zhijian. Highly active MoS2/reduced graphene oxide catalyst for anthracene hydrogenation [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 244-252. |
[3] | ZHOU Liya, ZHOU Xitong, ZHAO Congli, JIANG Yanjun, MA Li, He Ying. Synthesis and utilization of Pt and Pd nanoparticle-decorated MoS2 nanocomposites for fabrication of electrochemical biosensor [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4371-4380. |
[4] | WANG Yimeng, LIU Jianjun, ZUO Shengli, LI Kang. Research progress of active sites of MoS2 photoelectrocatalyst: optimization and performance [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3747-3759. |
[5] | ZHAO Dongsheng. Research progress in molybdenum disulfide nanosheet-based NF/RO membranes for water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5590-5599. |
[6] | Xiangyang ZHU, Dong QIAO, Qinling BI, Huifang XING, Shan NI, Liangrong YANG, Huizhou LIU. Preparation of a magnetically supported MoS2 catalyst and its heavy oil viscosity-reducing performance [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 170-174. |
[7] | Ting WANG, Huandi HOU, Ming DONG, Mengying TAO, Jun LONG. Research progress on oil-soluble catalysts precursor for slurry-phase hydrocracking of residue [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3669-3676. |
[8] | Peican WANG, Qing LEI, Shuai LIU, Baoguo WANG. MoS2-based electrocatalysts for hydrogen evolution and the prospect of hydrogen energy technology [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 278-291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |