1 |
AL-ATTAS Tareq A, Syed A ALI, ZAHIR Md Hasan, et al. Recent advances in heavy oil upgrading using dispersed catalysts[J]. Energy & Fuels, 2019, 33(9): 7917-7949.
|
2 |
BELLUSSI Giuseppe, RISPOLI Giacomo, LANDONI Alberto, et al. Hydroconversion of heavy residues in slurry reactors: developments and perspectives[J]. Journal of Catalysis, 2013, 308: 189-200.
|
3 |
王廷, 侯焕娣, 董明, 等. 浆态床油溶性加氢催化剂前体的研究进展[J]. 化工进展, 2020, 39(9): 3669-3676.
|
|
WANG Ting, HOU Huandi, DONG Ming, et al. Research progress on oil-soluble catalysts precursor for slurry-phase hydrocracking of residue[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3669-3676.
|
4 |
LI Min, WANG Dong’e, LI Jiahe, et al. Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation[J]. RSC Advances, 2016, 6(75): 71534-42.
|
5 |
KANG Ki Hyuk, NGUYEN Ngoc Thuy, SEO Pill Won, et al. Slurry-phase hydrocracking of heavy oil over Mo precursors: effect of triphenylphosphine ligands[J]. Journal of Catalysis, 2020, 384: 106-121.
|
6 |
KIM Sung-Ho, KIM Ki-Duk, LEE Donghun, et al. Structure and activity of dispersed Co, Ni, or Mo sulfides for slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2018, 364: 131-140.
|
7 |
BELLUSSI Giuseppe, RISPOLI Giacomo, MOLINARI Daniele, et al. The role of MoS2 nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates[J]. Catalysis Science & Technology, 2013, 3(1): 176-182.
|
8 |
KANG Ki Hyuk, KIM Gyoo Tae, PARK Sunyoung, et al. A review on the Mo-precursors for catalytic hydroconversion of heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 1-16.
|
9 |
LIU Bin, ZHAO Kedi, CHAI Yongming, et al. Slurry phase hydrocracking of vacuum residue in the presence of presulfided oil-soluble MoS2 catalyst[J]. Fuel, 2019, 246: 133-140.
|
10 |
KIM Ki-Duk, LEE Yong-Kul. Active phase of dispersed MoS2 catalysts for slurry phase hydrocracking of vacuum residue[J]. Journal of Catalysis, 2019, 369: 111-121.
|
11 |
ZHENG Anda, WANG Donge, WANG Lin, et al. Highly efficient MoS2 nanocatalysts for slurry-phase hydrogenation of unconventional feedstocks into fuels[J]. Energy & Fuels, 2021, 35(3): 2590-2601.
|
12 |
JIANG Yuxia, WANG Dong’e, LI Jiahe, et al. Designing MoS2 nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction[J]. Catalysis Science & Technology, 2017, 7(14): 2998-3007.
|
13 |
LI Jiahe, WANG Dong’e, MA Huaijun, et al. Ionic liquid assisted hydrothermal synthesis of MoS2 double-shell polyhedral cages with enhanced catalytic hydrogenation activities[J]. RSC Advances, 2017, 7(38): 23523-23529.
|
14 |
谭凤芝, 赵艳茹, 曹亚峰, 等. MoS2/石墨烯锂离子电池负极材料的制备及其性能[J]. 化工进展, 2017, 36(12): 4519-4523.
|
|
TAN Fengzhi, ZHAO Yanru, CAO Yafeng, et al. Preparation of MoS2/graphene and its performance for anode materials of Li-ion battery[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4519-4523.
|
15 |
WANG Shiren, ZHANG Yue, ABIDI Noureddine, et al. Wettability and surface free energy of graphene films[J]. Langmuir, 2009, 25(18): 11078-11081.
|
16 |
SHI Yumeng, LI Henan, WONG Jen It, et al. MoS2 surface structure tailoring via carbonaceous promoter[J]. Scientific Reports, 2015, 5: 10378.
|
17 |
BAHUGUNA Ashish, KUMAR Suneel, SHARMA Vipul, et al. Nanocomposite of MoS2-RGO as facile, heterogeneous, recyclable, and highly efficient green catalyst for one-pot synthesis of indole alkaloids[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8551-8567.
|
18 |
MENG Xiangyu, YU Liang, MA Chao, et al. Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction[J]. Nano Energy, 2019, 61: 611-616.
|
19 |
YANG Lan, WANG Xuzhen, LIU Yang, et al. Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2017, 200: 211-221.
|
20 |
LI Jinliang, LIU Xinjuan, PAN Likun, et al. MoS2-reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of Methylene Blue[J]. RSC Advances, 2014, 4(19): 9647.
|
21 |
XIE Junfeng, ZHANG Jiajia, LI Shuang, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135(47): 17881-17888.
|
22 |
GAO Minrui, CHAN Maria K Y, SUN Yugang. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production[J]. Nature Communications, 2015, 6(1): 1-8.
|
23 |
BEKX-SCHÜRMANN S, MANGELSEN S, BREUNINGER P, et al. Morphology, microstructure, coordinative unsaturation, and hydrogenation activity of unsupported MoS2: how idealized models fail to describe a real sulfide material[J]. Applied Catalysis B: Environmental, 2020, 266: 118623.
|
24 |
FERRARI Andrea C. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1/2): 47-57.
|
25 |
LI Xue, LI Jinhua, WANG Kai, et al. Pressure and temperature-dependent Raman spectra of MoS2 film[J]. Applied Physics Letters, 2016, 109(24): 242101.
|
26 |
MULLINS Oliver C. The modified Yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207.
|
27 |
STANISLAUS Antonymuthu, COOPER Barry H. Aromatic hydrogenation catalysis: a review[J]. Catalysis Reviews, 1994, 36(1): 75-123.
|
28 |
LI Dan, MÜLLER Marc B, GILJE Scott, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101-105.
|
29 |
LIU Xiandong, CHENG Jun, SPRIK Michiel, et al. Solution structures and acidity constants of molybdic acid[J]. The Journal of Physical Chemistry Letters, 2013, 4(17): 2926-2930.
|
30 |
TANG Shaobin, CAO Zexing. Adsorption and dissociation of ammonia on graphene oxides: a first-principles study[J]. The Journal of Physical Chemistry C, 2012, 116(15): 8778-8791.
|
31 |
DAAGE Michel, CHIANELLI Russell R. Structure-function relations in molybdenum sulfide catalysts: the “rim-edge” model[J]. Journal of Catalysis, 1994, 149(2): 414-427.
|