Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 253-263.DOI: 10.16085/j.issn.1000-6613.2021-0142
• Materials science and technology • Previous Articles Next Articles
BAI Yongzhen1(), SHANG Xiaobiao1,2,3(), LIU Meihong1, WEI Cong1, ZHANG Fucheng1, XIAO Liping1, LI Guangchao1, CHEN Junruo4
Received:
2021-01-20
Revised:
2021-03-24
Online:
2022-01-24
Published:
2022-01-05
Contact:
SHANG Xiaobiao
白永珍1(), 尚小标1,2,3(), 刘美红1, 魏聪1, 张富程1, 肖利平1, 李广超1, 陈君若4
通讯作者:
尚小标
作者简介:
白永珍(1994—),女,硕士研究生,研究方向为微波能工程应用技术。E-mail:基金资助:
CLC Number:
BAI Yongzhen, SHANG Xiaobiao, LIU Meihong, WEI Cong, ZHANG Fucheng, XIAO Liping, LI Guangchao, CHEN Junruo. Research progress of wave-transmitting materials for microwave heating[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 253-263.
白永珍, 尚小标, 刘美红, 魏聪, 张富程, 肖利平, 李广超, 陈君若. 微波加热用透波材料的研究进展[J]. 化工进展, 2022, 41(1): 253-263.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0142
材料 | 频率 | 温度 | 介电参数 | 数值 |
---|---|---|---|---|
氧化铝 | 2450MHz | 22℃≤T≤1379℃ | 8.9~11.77 | |
0.004~0.0476 | ||||
莫来石 | 915MHz | 400℃≤T≤1300℃ | 3×10-9T3-4×10-6T2+0.0032T+4.4869 | |
9×10-7T2-0.0002T-0.0268 | ||||
2450MHz | 27℃≤T≤1027℃ | 2.119×10-6T2-0.00037T+6.1438 | ||
1.7052×10-9T3-1.4616×10-6T2+0.000559T+0.02279 | ||||
熔融石英 | 915MHz | 25℃≤T≤1400℃ | 3.816~3.988 | |
tanδ | 4.98×10-6~8.39×10-6 | |||
2360MHz | 25℃≤T≤800℃ | 3.820~3.892 | ||
tanδ | 4.97×10-6~5.85×10-6 | |||
硅酸铝纤维板[ | 2422MHz | 20℃≤T≤1300℃ | 2×10-10T3-6×10-8T2-0.0003T+1.2671 | |
2×10-11T3-8×10-9T2-9×10-6T+0.0027 | ||||
氧化锆纤维板[ | 2422MHz | 20℃≤T≤1400℃ | 6×10-10T3-9×10-7T2-0.0003T+2.5433 | |
3×10-9T3-5×10-7T2-0.0003T+0.0438 |
材料 | 频率 | 温度 | 介电参数 | 数值 |
---|---|---|---|---|
氧化铝 | 2450MHz | 22℃≤T≤1379℃ | 8.9~11.77 | |
0.004~0.0476 | ||||
莫来石 | 915MHz | 400℃≤T≤1300℃ | 3×10-9T3-4×10-6T2+0.0032T+4.4869 | |
9×10-7T2-0.0002T-0.0268 | ||||
2450MHz | 27℃≤T≤1027℃ | 2.119×10-6T2-0.00037T+6.1438 | ||
1.7052×10-9T3-1.4616×10-6T2+0.000559T+0.02279 | ||||
熔融石英 | 915MHz | 25℃≤T≤1400℃ | 3.816~3.988 | |
tanδ | 4.98×10-6~8.39×10-6 | |||
2360MHz | 25℃≤T≤800℃ | 3.820~3.892 | ||
tanδ | 4.97×10-6~5.85×10-6 | |||
硅酸铝纤维板[ | 2422MHz | 20℃≤T≤1300℃ | 2×10-10T3-6×10-8T2-0.0003T+1.2671 | |
2×10-11T3-8×10-9T2-9×10-6T+0.0027 | ||||
氧化锆纤维板[ | 2422MHz | 20℃≤T≤1400℃ | 6×10-10T3-9×10-7T2-0.0003T+2.5433 | |
3×10-9T3-5×10-7T2-0.0003T+0.0438 |
1 | 周德良, 刘洁. 微波加热及其量子特性[J]. 黑龙江八一农垦大学学报, 2019, 31(1): 74-77, 108. |
ZHOU Deliang, LIU Jie. Microwave heating and quantum property[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(1): 74-77, 108. | |
2 | 牟群英, 李贤军. 微波加热技术的应用与研究进展[J]. 物理, 2004, 33(6): 438-442. |
MOU Qunying, LI Xianjun. Applications of microwave heating technology[J]. Physics, 2004, 33(6): 438-442. | |
3 | 彭金辉, 梅毅, 巨少华, 等. 微波化工技术[M]. 北京: 化学工业出版社, 2020. |
PENG Jinhui, MEI Yi, JU Shaohua, et al. Microwave chemical technology[M]. Beijing: Chemical Industry Press, 2020. | |
4 | LI Bo, ZHENG Jingguo, LI Wei. Influence of cobalt ions non-stoichiometry on the microstructure and microwave properties of Ca5Co4(VO4)6 ceramics[J]. Ceramics International, 2017, 43(16): 13956-13962. |
5 | HORIKOSHI S, SCHIFFMANN R F, FUKUSHIMA J, et al. Microwave-assisted chemistry[M]//Microwave Chemical and Materials Processing, 2018: 243-319. |
6 | CAMPAONE A, BAVA J, MASCHERONI R. Modeling and process simulation of controlled microwave heating of foods by using of the resonance phenomenon[J]. Applied Thermal Engineering, 2014, 73(1): 914-923. |
7 | BEHREND R, DORN C, UHLIG V, et al. Investigations on container materials in high temperature microwave applications[J]. Energy Procedia, 2017, 120: 417-423. |
8 | 蔡德龙, 陈斐, 何凤梅, 等. 高温透波陶瓷材料研究进展[J]. 现代技术陶瓷, 2019, 40(S1): 4-120. |
CAI Delong, CHEN Fei, HE Fengmei, et al. Recent progress and prospestion on high-temperature wave-transparent ceramic materials[J]. Advanced Ceramics, 2019, 40(Si): 4-120. | |
9 | 黄新松, 李文钦, 简科. 耐高温陶瓷透波纤维研究进展[J]. 安全与电磁兼容, 2010(2): 53-56. |
HUANG Xinsong, LI Wenqin, JIAN Ke. Progress in the research of high-temperature ceramic wave-transparent fibers[J]. Safety and EMC, 2010(2): 53-56. | |
10 | 张子龙. 超常材料对常规微波材料吸收性能的调控研究[D]. 长沙: 湖南大学, 2016. |
ZHANG Zilong. Absorbing properties of conventional microwave absorbing material optimized by metamaterials[D]. Changsha: Hunan University, 2016. | |
11 | AAKRITI R, ABHISHEKKUMAR J, MARIFHUSSAIN A, et al. Metamaterial-inspired microwave sensor for measurement of complex permittivity of materials[J]. Microwave and Optical Technology Letters,2016, 58(11): 2577-2581. |
12 | 谢绵钰. 几种功能材料的高效能制备与性能表征[D]. 广州: 暨南大学, 2016. |
XIE Mianyu. Efficient preparation and characterization of several kinds of functional materials[D]. Guangzhou: Jinan University, 2016. | |
13 | 尚小标, 陈君若, 张伟峰, 等. 硅酸铝/氧化锆纤维板在微波加热中透波性研究[J]. 化学工程, 2014, 42(5): 35-38. |
SHANG Xiaobiao, CHEN Junruo, ZHANG Weifeng, et al. Wave-transparent property of alumino silicate/zirconia fiberboard in microwave heating[J]. Chemical Engineering, 2014, 42(5): 35-38. | |
14 | BHATTACHARYA M, BASAK T. A review on the susceptor assisted microwave processing of materials[J]. Energy, 2016, 97: 306-338. |
15 | ZHOU B, ZHOU J, ZHANG Z, et al. Dielectric characterizations and heating behavior of siderite in microwave field[J]. Materials Research Express, 2018, 5(10): 105502. |
16 | SHANG X B, ZHAI D, ZHANG F, et al. Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45GHz microwave heating[J]. Ceramics International, 2019, 45(17): 23493-23500. |
17 | AFSAR M N, BIRCH J R, CLARKE R N, et al. The measurement of the properties of materials[J]. Proceedings of the IEEE, 1986, 74(1): 183-199. |
18 | 赵艳丽. 典型地物微波介电特性及其室内测量方法研究[D]. 成都: 电子科技大学, 2009. |
ZHAO Yanli. Microwave dielectric properties of typical ground objects and its indoor measurement method[D]. Chengdu: University of Electronic Science and Technology, 2009. | |
19 | 王秀丽. 典型地物介电常数测量方法研究[D]. 成都: 电子科技大学, 2011. |
WANG Xiuli. Research on measurement method of dielectric constant of typical ground objects[D]. Chengdu: University of Electronic Science and Technology, 2011. | |
20 | 黎义, 李建保, 何小瓦. 采用谐振腔法研究透波材料的高温介电性能[J]. 红外与毫米波学报, 2004, 23(2): 157-160. |
LI Yi, LI Jianbao, HE Xiaowa. Study on high temperature dielectric properties of magnetic window materials by cavity resonator method[J]. Journal of Infrared and Millimeter Waves, 2004, 23(2): 157-160. | |
21 | 王依超, 郭高凤, 王娟, 等. 自由空间法测量电磁材料电磁参数[J]. 宇航材料工艺, 2014, 44(1): 107-111. |
WANG Yichao, GUO Gaofeng, WANG Juan, et al. Measurement of electromagnetic parameters of electromagnetic materials by free-space method[J]. Aerospace Materials & Technology, 2014, 44(1): 107-111. | |
22 | PENG Z W, JIANN T. Microwave dielectric characterization of silicon dioxide[M]. Hoboken: John Wiley & Sons, Inc., 2013. |
23 | SHANG X B, CHEN J R, PENG J H. Dynamic transmission performances of alumina and mullite refractory ceramics in microwave high-temperature heating[J]. High Temperature Materials and Processes, 2016, 35(1): 113-119. |
24 | ZHAI D, WEI C, ZHANG F C, et al. Microwave transmission performance of fused silica ceramics in microwave high-temperature heating[J]. Ceramics International, 2019, 45(5): 6157-6162. |
25 | ZHAI D, ZHANG F C, WEI C, et al. Dielectric properties and electromagnetic wave transmission performance of polycrystalline mullite fiberboard at 2.45GHz[J]. Ceramics International, 2020, 46(6): 7362-7373. |
26 | LEWIS D, SPANN J R. Assessment of new radome materials as replacements for pyroceram 9606[J]. Scientia Sinica, 1980: 165-169. |
27 | 吴文军, 胡子君, 李俊宁, 等. Al2O3掺杂对SiO2纳米透波/隔热材料性能的影响[J]. 宇航材料工艺, 2014, 44(1): 97-100. |
WU Wenjun, HU Zijun, LI Junning, et al. Effect on the properties of SiO2 nanoporous transparent-wave/heat-insulation materials doped with Al2O3[J]. Aerospace Materials & Technology, 2014, 44(1): 97-100. | |
28 | 张雄, 王义, 程海峰. 石英纤维透波复合材料的研究进展[J]. 材料导报, 2012, 26(S1): 96-100. |
ZHANG Xiong, WANG Yi, CHENG Haifeng. Research and development of wave-transparent composites reinforced by silica fibers[J]. Materials Review, 2012, 26(S1): 96-100. | |
29 | 万欣欣, 尚小标, 陈君若, 等. 二氧化硅陶瓷在微波场中的透波性能研究[J]. 中国陶瓷, 2015, 51(3): 15-17. |
WAN Xinxin, SHANG Xiaobiao, CHEN Junruo, et al. Study on the wave-transparent property of silicon dioxide under microwave irradiation[J]. China Ceramics, 2015, 51(3): 15-17. | |
30 | HOTTA M, HAYASHI M, NISHIKATA A, et al. Complex permittivity and permeability of SiO2 and Fe3O4 powders in microwave frequency range between 0.2 and 13.5GHz[J]. ISIJ International, 2009, 49(9): 1443-1448. |
31 | Jane’s Information Group. Jane’s strategic weapon systems [R]. Jane’s Air-Launched Weapons, 2009. |
32 | 张雯, 王红洁, 金志浩. 先驱体热解制备BN复合陶瓷材料研究进展[J]. 兵器材料科学与工程, 2004, 27(5): 58-63. |
ZHANG Wen, WANG Hongjie, JIN Zhihao. Preparation of BN matrix composites, by precursor thermolysis[J]. Ordnance Material Science and Engineering, 2004, 27(5): 58-63. | |
33 | GOLDEN K, HANAWALT B, OSSMANN W. The prediction and measure of dielectric proper-ties and RF transmission through ablating BN antenna windows[C]//16th Thermophysics Conference. California: Palo Alto, 1981: 23-25. |
34 | HANAWALT A. Plasma arc test technique for evaluating antenna window RF transmission performance[C]//American Institute of Aeronautics and Astronautics and American Society of Mechanical Engineers. Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 3rd, St. Louis, MO, 1982: 9. |
35 | HAN J, SUN Y, ZHANG Y. Dielectric properties in GHz range of porous Si3N4-BN-SiO2 ceramics with considerable flexural strength prepared by low temperature sintering in air[J]. Materials Science and Technology, 2010, 26(8): 996-1000. |
36 | 刘坤, 张长瑞, 曹峰, 等. BNp/BN复合材料的制备及其性能研究[C]//全国高技术陶瓷学术年会摘要集. 南京, 2012. |
LIU Kun, ZHANG Changrui, CAO Feng, et al. Preparation and properties of BNp/BN composites[C]//National High Tech Ceramics Annual Meeting. Nanjing, 2012. | |
37 | 邹春荣, 张长瑞, 肖永栋, 等. 高性能透波陶瓷纤维的研究现状和展望[J]. 硅酸盐通报, 2013, 32(2): 274-279. |
ZOU Chunrong, ZHANG Changrui, XIAO Yongdong, et al. Progress and prospect of high performance wave-transparent ceramic fibers[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(2): 274-279. | |
38 | 李光亚, 梁艳媛. 纤维增强SiBN陶瓷基复合材料的制备及性能[J]. 宇航材料工艺, 2016, 46(3): 61-64. |
LI Guangya, LIANG Yanyuan. Preparation and performance of fiber reinforced SiBN ceramic matrix composite[J]. Aerospace Materials & Technology, 2016, 46(3): 61-64. | |
39 | 范冰冰, 李红霞, 李威, 等. 一种微波窑用SiNO透波-隔热一体化内衬材料及其制备方法: CN201710118361.X[P]. 2017-05-31. |
FAN Bingbing, LI Hongxia, LI Wei, et al. SiNO wave transmission-heat insulation integrated inner lining material for microwave kiln, and preparation method of material: CN 201710118361.X[P]. 2017-05-31. | |
40 | 徐恩霞, 王玉霞, 董萌蕾, 等. 一种微波冶金窑车用刚玉-氧氮化硅复合耐火材料: CN 201710736091.9[P]. 2017-12-01. |
XU Enxia, WANG Yuxia, DONG Menglei, et al. Corundum silicon oxynitride composite refractory material for microwave metallurgical kiln car: CN 201710736091.9[P]. 2017-12-01. | |
41 | 魏坤, 贺伦燕, 石燕. 莫来石材料的研究现状及其应用[J]. 功能材料, 1993, 24(1): 85-91. |
WEI Kun, HE Lunyan, SHI Yan. Study present situation and application of mullite materials[J]. Journal of Functional Materials, 1993, 24(1): 85-91. | |
42 | 张桂敏. 莫来石的低温合成与透波性能研究[D]. 武汉: 武汉理工大学, 2010. |
ZHANG Guimin. Synthesis of mullite at low temperature and research of transparency of mullite ceramic[D]. Wuhan: Wuhan University of Technology, 2010. | |
43 | 孟彬, 彭金辉, 刘永鹤, 等. 微波冶金用堇青石莫来石耐火材料制备及性能[J]. 材料科学与工艺, 2011, 19(3): 32-36. |
MENG Bin, PENG Jinhui, LIU Yonghe, et al. Preparation and its properties of cordierite-mullite refractory material used in microwave metallurgy[J]. Materials Science and Technology, 2011, 19(3): 32-36. | |
44 | 刘永鹤. 原位合成莫来石晶须韧化微波冶金用刚玉-莫来石耐火材料的研究[D]. 昆明: 昆明理工大学, 2011. |
LIU Yonghe. Study on toughening corundum mullite refractories for microwave metallurgy by in situ synthesized mullite whiskers[D]. Kunming: Kunming University of Technology, 2011. | |
45 | 尚小标, 陈君若, 张伟峰, 等. 莫来石耐火材料在微波加热中的透波性能研究[J]. 材料导报, 2014, 28(10): 109-112. |
SHANG Xiaobiao, CHEN Junruo, ZHANG Weifeng, et al. Study on the wave-transparent property of mullite refractory layer in microwave heating[J]. Materials Review, 2014, 28(10): 109-112. | |
46 | 李光亚, 梁艳媛, 刘家臣, 等. 刚玉-莫来石多孔透波材料的制备及性能研究[J]. 稀有金属材料与工程, 2015, 44(S1): 43-46. |
LI Guangya, LIANG Yanyuan, LIU Jiachen,et al. Preparation of porous and wave-transmitting alumina-mullite materials and their properties[J]. Rare Metal Materials and Engineering, 2015, 44(S1): 43-46. | |
47 | 董萌蕾. 微波冶金用刚玉-氮化硅及莫来石-氮化硅复合材料的研制[D]. 郑州: 郑州大学, 2017. |
DONG Menglei. Research and preparation of corundum-silicon nitride and mullite-silicon nitride composites for microwave metallurgy[D]. Zhengzhou: Zhengzhou University, 2017. | |
48 | 胡连成, 黎义, 于翘. 俄罗斯航天透波材料现状考察[J] . 宇航材料工艺, 1994, 24(1): 48-52. |
HU Liancheng, LI Yi, YU Qiao. Investigation on the current situation of wave transmission in Russian space[J]. Aerospace Materials & Technology, 1994, 24(1): 48-52. | |
49 | 曹海琳, 张杰, 黄玉东, 等. 磷酸铬铝高温透波材料的制备和性能研究[J]. 宇航材料工艺, 2004, 34(2): 29-32. |
CAO Hailin, ZHANG Jie, HUANG Yudong, et al. Study on synthesis and properties of heat-resistant electrically transparent chrome-alumina phosphate[J]. Aerospace Materials & Technology, 2004, 34(2): 29-32. | |
50 | 刘文娟. 晶须增强磷酸铝透波材料的研究[D]. 济南: 济南大学, 2010. |
LIU Wenjuan. Whisher reinforced wave-transparents materials[D]. Jinan: Jinan University, 2010. | |
51 | 陈宁. 原位生长莫来石增强磷酸铬铝高温透波材料的研究[D]. 北京: 中国建筑材料科学研究总院, 2014. |
CHEN Ning. Study on in-situ mullite reinforced aluminum-chrome phosphates high temperature wave-transparent composites[D]. Beijing: China General Research Institute of Building Materials, 2014. | |
52 | 耿浩然, 刘文娟, 侯宪钦, 等. 硼酸盐系晶须增强的磷酸铝陶瓷透波材料及其制备方法: CN 201010106994.7[P]. 2010-09-01. |
GENG Haoran, LIU Wenjuan, HOU Xianqin, et al. Borate whisker reinforced aluminum phosphate ceramic wave transparent material and its preparation method there of: CN 201010106994.7[P]. 2010-09-01. | |
53 | WANG H, GENG H, LIU C. The influence of SiO2 on the aluminum borate whisker reinforced aluminum phosphate wave-transparent materials[J]. Procedia Engineering, 2012, 27: 1222-1227. |
54 | 王锋, 王继辉, 肖永栋. 磷酸铝系透波复合材料的力学性能与介电性能研究[J]. 宇航材料工艺, 2006, 36(6): 26-28. |
WANG Feng, WANG Jihui, XIAO Yongdong. The mechanical and dielectrical properties of aluminum phosphate matrix composite[J]. Aerospace Materials & Technology, 2006, 36(6): 26-28. | |
55 | 王河. 高性能磷酸铝基透波材料的制备及性能研究[D]. 济南: 济南大学, 2012. |
WANG He. Study and preparation of high performance aluminum phosphates wave-transparent materials[D]. Jinan: Jinan University, 2012. | |
56 | 李瑞波. 玻纤布增强聚四氟乙烯透波材料性能研究[D]. 郑州: 郑州大学, 2016. |
LI Ruibo. Research on properties of glass fibe fabric reinforced PTFE composites[D]. Zhengzhou: Zhengzhou University, 2016. | |
57 | 宋麦丽, 崔红, 杨星, 等. 高硅氧/有机硅透波材料性能研究[J]. 材料导报, 2009, 23(S1): 384-386. |
SONG Maili, CUI Hong, YANG Xing, et al. Study on properties of silica glass/silicone resin radome materials[J]. Materials Review, 2009, 23(S1): 384-386. | |
58 | 陈立瑶. 玻纤增强树脂基透波复合材料的制备及性能研究[D]. 郑州: 中原工学院, 2018. |
CHEN Liyao. Study on fabrication and properties of glass fiber reinforced resin wave-transparent composites[D]. Zhengzhou: Zhongyuan University of Technology, 2018. | |
59 | 胡艳志. 环氧树脂基透波复合材料制备与性能研究[D]. 武汉: 武汉理工大学, 2014. |
HU Yanzhi. Study on preparation and properties of epoxy-matrix wave-transparent composite[D]. Wuhan: Wuhan University of Technology, 2014. | |
60 | RAJESH S, NISA V S, MURALI K P, et al. Microwave dielectric properties of PTFE/rutile nanocomposites[J]. Journal of Alloys and Compounds, 2009, 477(1/2): 677-682. |
61 | ESTEL L, POUX M, BENAMARA N, et al. Continuous flow-microwave reactor: where are we?[J]. Chemical Engineering and Processing, 2017, 113: 56-64. |
62 | LI Yingguang, CHENG Libing, ZHOU Jing, Curing multidirectional carbon fiber reinforced polymer composites with indirect microwave heating[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(1/2/3/4): 1137-1147. |
63 | CASTILLEJO N, MARTÍNEZ-HERNÁNDEZ G B, LOZANO-GUERRERO A J, et al. Microwave heating modelling of a green smoothie: effects on glucoraphanin, sulforaphane and S-methyl cysteine sulfoxide changes during storage[J]. Journal of the Science of Food and Agriculture, 2018, 98(5): 1863-1872. |
64 | 范景莲, 黄伯云, 刘军, 等. 微波烧结原理与研究现状[J]. 粉末冶金工业, 2004, 14(1): 29-33. |
FAN Jinglian, HUANG Baiyun, LIU Jun, et al. Principles and status of microwave sintering[J]. Powder Metallurgy Industry, 2004, 14(1): 29-33. | |
65 | 殷增斌, 徐伟伟, 汪家傲, 等. 一种陶瓷材料微波烧结用保温装置: CN 201710263010.8[P]. 2019-10-18. |
YIN Zengbin, XU Weiwei, WANG Jia,ao, et al. Thermal insulation device for microwave sintering of ceramic material: CN 1710263010.8[P]. 2019-10-18. | |
66 | 盛新太. 用于高温管线、设备保温的新型绝热节能材料——陶瓷纤维覆铝箔针刺毯[J]. 化工设备与管道, 2007, 44(5): 59-62. |
SHENG Xintai. A new energy-saving insulator material used in high temperature pipeline and vessel—Ceramic fiber blanket with aluminum foil[J]. Process Equipment & Piping, 2007, 44(5): 59-62. | |
67 | 李呈顺, 张玉军, 张景德. 溶胶凝胶法制备多晶莫来石纤维[J]. 无机材料学报, 2009, 24(4): 848-852. |
LI Chengshun, ZHANG Yujun, ZHANG Jingde. Polycrystalline mullite fibers prepared by sol-gel method[J]. Journal of Inorganic Materials, 2009, 24(4): 848-852. | |
68 | SHANG X B, ZHAI D, LIU M H, et al. Dielectric properties and electromagnetic wave transmission performance of aluminium silicate fibreboard at 915MHz and 2450MHz[J]. Ceramics International, 2021, 47(6): 7539-7557. |
69 | WANG S, ZHAO C S, WANG D Q, et al. Preparation of refractory fiber cardboard for building insulation[J]. Applied Mechanics and Materials, 2013, 357/358/359/360: 1295-1299. |
70 | MECHNICH P, FLUCHT F, SCHMÜCKER M. Manufacturing of porous mullite fiber compacts by uniaxial hot pressing of semicrystalline MAFTEC® MLS-2 organic bound mats[J]. Journal of Materials Research, 2017, 32(17): 3294-3301. |
[1] | WEI Cong, SHANG Xiaobiao, ZHANG Fucheng, LIU Meihong, BAI Yongzhen, LI Guangchao, XIAO Liping, Di ZHAI, CHEN Junruo. Transmission properties of polytetrafluoroethylene container for microwave chemical reaction [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3862-3869. |
[2] | WEN Jiaxin, ZHANG Xin, LIU Yunxia, HE Zhiqiang, QU Qichao. Preparation and performance of smart anti-corrosion coating based on nanocontainers of BTA@MSNs-PAA [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2685-2694. |
[3] | Huanlei ZHANG, Lisheng CHENG, Zhenghe ZHANG, Jing TAN, Weimin YANG, Ying AN. Insights into the distribution regularity of temperature and thermal stress for the co-heating process of carbon fibers via laser and microwave [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 195-199. |
[4] | XING Qingda, ZHOU Liang, LI Huazheng, WANG Jinqu, ZHANG Wenjun. Preparation and desalination performance of high quality NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4170-4175. |
[5] | MENG Lingjia, JI Zhonghai, CHEN Jin. Advance of the thermal decomposition of industrial by-product gypsum [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 626-633. |
[6] | YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, LUO Dan. Progress in researches on microwave heating in unconventional oil resources [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3478-3483. |
[7] | JI Zhonghai, CHEN Jin, GUO Yu, GUO Lina, QIN Li, MENG Lingjia. Decomposition of flue gas desulfurization (FGD) gypsum under microwave heating to produce sinter ore [J]. Chemical Industry and Engineering Progree, 2016, 35(07): 2251-2257. |
[8] | LUO Wanjiang, LAN Xinzhe, SONG Yonghui. Release of gaseous products in oil shale pyrolysis by microwave heating [J]. Chemical Industry and Engineering Progree, 2015, 34(3): 689-694. |
[9] | SHANG Hui,LU Ranran,CHEN Yu. Microwave-assisted synthesis of naphthalenetetracarboxylic acid and o-phenylenediamine [J]. Chemical Industry and Engineering Progree, 2011, 30(8): 1832-. |
[10] | WANG Wanfu1,LI Guo2,YONG Xingyue2,LIU Peng1,ZHANG Xiaofei1,WANG Jidong2. Microwave thermal inversion of oily sludge by programmed temperature increasing [J]. Chemical Industry and Engineering Progree, 2011, 30(10): 2310-. |
[11] | ZHAO Xiqiang,SONG Zhanlong,WANG Tao,LI Longzhi,MA Chunyuan. Progress of pyrolysis using microwave heating technique [J]. Chemical Industry and Engineering Progree, 2008, 27(12): 1873-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |