Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (S2): 234-242.DOI: 10.16085/j.issn.1000-6613.2020-0853
• Materials science and technology • Previous Articles Next Articles
Yi LU(), Yawen YUAN, Lijun WU, Hongchao LIU, Guojian GUO, Xia LIU
Received:
2020-05-19
Online:
2020-11-17
Published:
2020-11-20
Contact:
Yi LU
通讯作者:
鲁毅
作者简介:
鲁毅(1986—),男,高级工程师,研究方向为石墨烯计量与测试。E-mail:基金资助:
CLC Number:
Yi LU, Yawen YUAN, Lijun WU, Hongchao LIU, Guojian GUO, Xia LIU. Determination of total sulfur in graphene by high frequency induction combustion-infrared absorption method[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 234-242.
鲁毅, 袁亚文, 吴立军, 柳洪超, 郭国建, 刘霞. 高频感应燃烧-红外吸收法测定石墨烯中总硫含量[J]. 化工进展, 2020, 39(S2): 234-242.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0853
参数 | 设定值 | 参数 | 设定值 |
---|---|---|---|
震荡频率/MHz | 20 | 氧气纯度/% | ≥99.9 |
输出功率/kW | 2.2 | 氧气压力/MPa | 0.25 |
冲洗时间/s | 8 | 氮气纯度/% | ≥99.5 |
积分时间/s | 50 | 氮气压力/MPa | 0.28 |
参数 | 设定值 | 参数 | 设定值 |
---|---|---|---|
震荡频率/MHz | 20 | 氧气纯度/% | ≥99.9 |
输出功率/kW | 2.2 | 氧气压力/MPa | 0.25 |
冲洗时间/s | 8 | 氮气纯度/% | ≥99.5 |
积分时间/s | 50 | 氮气压力/MPa | 0.28 |
石墨烯样品 | 测定值(质量分数)/% | 平均值(质量分数)/% | RSD/% | 艾士卡法/% | 偏差/% | ||||
---|---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | |||||
压实前 | 1.02 | 0.96 | 0.98 | 1.07 | 0.92 | 0.99 | 5.80 | 1.27 | -0.28 |
压实后 | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.25 | 0.92 | 1.27 | -0.02 |
石墨烯样品 | 测定值(质量分数)/% | 平均值(质量分数)/% | RSD/% | 艾士卡法/% | 偏差/% | ||||
---|---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | |||||
压实前 | 1.02 | 0.96 | 0.98 | 1.07 | 0.92 | 0.99 | 5.80 | 1.27 | -0.28 |
压实后 | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.25 | 0.92 | 1.27 | -0.02 |
取样量/mg | 测定值(质量分数)/% | 平均值(质量分数)/% | RSD/% | ||||
---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | |||
5.0 | 1.48 | 1.54 | 1.51 | 1.49 | 1.52 | 1.508 | 1.58 |
9.9 | 1.35 | 1.34 | 1.32 | 1.37 | 1.36 | 1.348 | 1.43 |
15.0 | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.246 | 0.92 |
20.1 | 1.24 | 1.25 | 1.24 | 1.22 | 1.25 | 1.240 | 0.99 |
24.9 | 1.23 | 1.26 | 1.25 | 1.24 | 1.26 | 1.248 | 1.04 |
49.8 | 1.23 | 1.24 | 1.26 | 1.23 | 1.25 | 1.242 | 1.05 |
75.1 | 1.22 | 1.24 | 1.21 | 1.25 | 1.22 | 1.228 | 1.34 |
取样量/mg | 测定值(质量分数)/% | 平均值(质量分数)/% | RSD/% | ||||
---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | |||
5.0 | 1.48 | 1.54 | 1.51 | 1.49 | 1.52 | 1.508 | 1.58 |
9.9 | 1.35 | 1.34 | 1.32 | 1.37 | 1.36 | 1.348 | 1.43 |
15.0 | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.246 | 0.92 |
20.1 | 1.24 | 1.25 | 1.24 | 1.22 | 1.25 | 1.240 | 0.99 |
24.9 | 1.23 | 1.26 | 1.25 | 1.24 | 1.26 | 1.248 | 1.04 |
49.8 | 1.23 | 1.24 | 1.26 | 1.23 | 1.25 | 1.242 | 1.05 |
75.1 | 1.22 | 1.24 | 1.21 | 1.25 | 1.22 | 1.228 | 1.34 |
铁屑用量/g | 钨锡用量/g | 测定值(质量分数)/% | 平均值(质量分数)/% | RSD/% | ||||
---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | ||||
0.4 | 0.2 | 1.03 | 1.07 | 0.96 | 1.05 | 1.06 | 1.034 | 4.25 |
0.4 | 0.4 | 1.17 | 1.19 | 1.21 | 1.19 | 1.13 | 1.178 | 2.57 |
0.4 | 0.6 | 1.21 | 1.18 | 1.21 | 1.19 | 1.20 | 1.198 | 1.09 |
0.6 | 0.4 | 1.18 | 1.17 | 1.15 | 1.21 | 1.19 | 1.180 | 1.89 |
0.6 | 0.6 | 1.25 | 1.23 | 1.22 | 1.25 | 1.24 | 1.238 | 1.05 |
0.6 | 0.8 | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.246 | 0.92 |
0.8 | 0.6 | 1.22 | 1.26 | 1.23 | 1.26 | 1.23 | 1.240 | 1.51 |
0.8 | 0.8 | 1.24 | 1.23 | 1.25 | 1.25 | 1.27 | 1.248 | 1.19 |
0.8 | 1.0 | 1.25 | 1.22 | 1.25 | 1.25 | 1.24 | 1.242 | 1.05 |
铁屑用量/g | 钨锡用量/g | 测定值(质量分数)/% | 平均值(质量分数)/% | RSD/% | ||||
---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | ||||
0.4 | 0.2 | 1.03 | 1.07 | 0.96 | 1.05 | 1.06 | 1.034 | 4.25 |
0.4 | 0.4 | 1.17 | 1.19 | 1.21 | 1.19 | 1.13 | 1.178 | 2.57 |
0.4 | 0.6 | 1.21 | 1.18 | 1.21 | 1.19 | 1.20 | 1.198 | 1.09 |
0.6 | 0.4 | 1.18 | 1.17 | 1.15 | 1.21 | 1.19 | 1.180 | 1.89 |
0.6 | 0.6 | 1.25 | 1.23 | 1.22 | 1.25 | 1.24 | 1.238 | 1.05 |
0.6 | 0.8 | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.246 | 0.92 |
0.8 | 0.6 | 1.22 | 1.26 | 1.23 | 1.26 | 1.23 | 1.240 | 1.51 |
0.8 | 0.8 | 1.24 | 1.23 | 1.25 | 1.25 | 1.27 | 1.248 | 1.19 |
0.8 | 1.0 | 1.25 | 1.22 | 1.25 | 1.25 | 1.24 | 1.242 | 1.05 |
标物编号 | 总硫 | 固定碳 | SiO2 | Al2O3 | Fe2O3 | CaO | 其他 |
---|---|---|---|---|---|---|---|
GBW03118 | 1.18 | 2.91 | 49.84 | 12.93 | 6.73 | 9.37 | 剩余 |
GBW03119 | 2.59 | 9.91 | 49.34 | 13.03 | 6.99 | 5.34 | 剩余 |
GBW03120 | 0.14 | 76.50 | 10.34 | 5.60 | 1.48 | 0.74 | 剩余 |
标物编号 | 总硫 | 固定碳 | SiO2 | Al2O3 | Fe2O3 | CaO | 其他 |
---|---|---|---|---|---|---|---|
GBW03118 | 1.18 | 2.91 | 49.84 | 12.93 | 6.73 | 9.37 | 剩余 |
GBW03119 | 2.59 | 9.91 | 49.34 | 13.03 | 6.99 | 5.34 | 剩余 |
GBW03120 | 0.14 | 76.50 | 10.34 | 5.60 | 1.48 | 0.74 | 剩余 |
样品 | 工作曲线 | 测定值(质量分数)/% | 平均值(质量分数)/% | RSD/% | ||||
---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | ||||
1# | 艾士卡法 | 0.21 | 0.23 | 0.22 | 0.23 | 0.24 | 0.226 | 5.05 |
低合金钢 | 0.218 | 0.221 | 0.218 | 0.216 | 0.211 | 0.217 | 1.71 | |
石墨矿 | 0.57 | 0.56 | 0.58 | 0.55 | 0.56 | 0.564 | 2.02 | |
2# | 艾士卡法 | 1.28 | 1.22 | 1.30 | 1.26 | 1.31 | 1.274 | 2.81 |
低合金钢 | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.246 | 0.92 | |
石墨矿 | 1.41 | 1.39 | 1.43 | 1.4 | 1.42 | 1.410 | 1.12 | |
3# | 艾士卡法 | 3.68 | 3.60 | 3.63 | 3.63 | 3.67 | 3.642 | 0.90 |
低合金钢 | 3.63 | 3.59 | 3.63 | 3.58 | 3.56 | 3.598 | 0.87 | |
石墨矿 | 3.64 | 3.66 | 3.72 | 3.69 | 3.71 | 3.684 | 0.91 |
样品 | 工作曲线 | 测定值(质量分数)/% | 平均值(质量分数)/% | RSD/% | ||||
---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | ||||
1# | 艾士卡法 | 0.21 | 0.23 | 0.22 | 0.23 | 0.24 | 0.226 | 5.05 |
低合金钢 | 0.218 | 0.221 | 0.218 | 0.216 | 0.211 | 0.217 | 1.71 | |
石墨矿 | 0.57 | 0.56 | 0.58 | 0.55 | 0.56 | 0.564 | 2.02 | |
2# | 艾士卡法 | 1.28 | 1.22 | 1.30 | 1.26 | 1.31 | 1.274 | 2.81 |
低合金钢 | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.246 | 0.92 | |
石墨矿 | 1.41 | 1.39 | 1.43 | 1.4 | 1.42 | 1.410 | 1.12 | |
3# | 艾士卡法 | 3.68 | 3.60 | 3.63 | 3.63 | 3.67 | 3.642 | 0.90 |
低合金钢 | 3.63 | 3.59 | 3.63 | 3.58 | 3.56 | 3.598 | 0.87 | |
石墨矿 | 3.64 | 3.66 | 3.72 | 3.69 | 3.71 | 3.684 | 0.91 |
测定值(质量分数)/% | 标准偏差/% | 检出限/% | 定量限/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | 6# | 7# | 8# | 9# | 10# | |||
0.0813 | 0.0825 | 0.0804 | 0.0819 | 0.0837 | 0.0828 | 0.0814 | 0.0829 | 0.0811 | 0.0804 | 0.0011 | 0.0033 | 0.011 |
测定值(质量分数)/% | 标准偏差/% | 检出限/% | 定量限/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | 6# | 7# | 8# | 9# | 10# | |||
0.0813 | 0.0825 | 0.0804 | 0.0819 | 0.0837 | 0.0828 | 0.0814 | 0.0829 | 0.0811 | 0.0804 | 0.0011 | 0.0033 | 0.011 |
样品编号 | 测定值(质量分数)/% | 平均值 (质量分数)/% | RSD/% | 艾士卡法 (质量分数)/% | 偏差/% | ||||
---|---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | |||||
山东厂家 | |||||||||
1# | 0.243 | 0.239 | 0.246 | 0.235 | 0.246 | 0.242 | 1.97 | 0.29 | -0.05 |
2# | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.25 | 0.92 | 1.27 | -0.02 |
3# | 1.16 | 1.15 | 1.15 | 1.14 | 1.16 | 1.15 | 0.73 | 1.18 | -0.03 |
江苏厂家1 | |||||||||
1# | 0.268 | 0.263 | 0.276 | 0.272 | 0.267 | 0.269 | 1.85 | 0.21 | 0.06 |
江苏厂家2 | |||||||||
1# | 0.615 | 0.606 | 0.624 | 0.625 | 0.619 | 0.618 | 1.25 | 0.69 | -0.07 |
福建厂家 | |||||||||
1# | 0.0813 | 0.0825 | 0.0804 | 0.0819 | 0.0837 | 0.082 | 1.52 | 0.093 | -0.011 |
2# | 0.0865 | 0.0859 | 0.0886 | 0.0876 | 0.0879 | 0.087 | 1.25 | 0.106 | -0.019 |
浙江厂家 | |||||||||
1# | 0.263 | 0.265 | 0.259 | 0.267 | 0.259 | 0.263 | 1.36 | 0.26 | 0.003 |
黑龙江厂家 | |||||||||
1# | 1.12 | 1.14 | 1.12 | 1.13 | 1.14 | 1.13 | 0.88 | 1.08 | 0.05 |
2# | 0.113 | 0.118 | 0.119 | 0.117 | 0.116 | 0.117 | 1.97 | 0.15 | -0.03 |
3# | 3.63 | 3.59 | 3.63 | 3.58 | 3.56 | 3.60 | 0.87 | 3.64 | -0.04 |
河北厂家 | |||||||||
1# | 0.218 | 0.221 | 0.218 | 0.216 | 0.211 | 0.217 | 1.71 | 0.23 | -0.01 |
样品编号 | 测定值(质量分数)/% | 平均值 (质量分数)/% | RSD/% | 艾士卡法 (质量分数)/% | 偏差/% | ||||
---|---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | |||||
山东厂家 | |||||||||
1# | 0.243 | 0.239 | 0.246 | 0.235 | 0.246 | 0.242 | 1.97 | 0.29 | -0.05 |
2# | 1.23 | 1.25 | 1.26 | 1.24 | 1.25 | 1.25 | 0.92 | 1.27 | -0.02 |
3# | 1.16 | 1.15 | 1.15 | 1.14 | 1.16 | 1.15 | 0.73 | 1.18 | -0.03 |
江苏厂家1 | |||||||||
1# | 0.268 | 0.263 | 0.276 | 0.272 | 0.267 | 0.269 | 1.85 | 0.21 | 0.06 |
江苏厂家2 | |||||||||
1# | 0.615 | 0.606 | 0.624 | 0.625 | 0.619 | 0.618 | 1.25 | 0.69 | -0.07 |
福建厂家 | |||||||||
1# | 0.0813 | 0.0825 | 0.0804 | 0.0819 | 0.0837 | 0.082 | 1.52 | 0.093 | -0.011 |
2# | 0.0865 | 0.0859 | 0.0886 | 0.0876 | 0.0879 | 0.087 | 1.25 | 0.106 | -0.019 |
浙江厂家 | |||||||||
1# | 0.263 | 0.265 | 0.259 | 0.267 | 0.259 | 0.263 | 1.36 | 0.26 | 0.003 |
黑龙江厂家 | |||||||||
1# | 1.12 | 1.14 | 1.12 | 1.13 | 1.14 | 1.13 | 0.88 | 1.08 | 0.05 |
2# | 0.113 | 0.118 | 0.119 | 0.117 | 0.116 | 0.117 | 1.97 | 0.15 | -0.03 |
3# | 3.63 | 3.59 | 3.63 | 3.58 | 3.56 | 3.60 | 0.87 | 3.64 | -0.04 |
河北厂家 | |||||||||
1# | 0.218 | 0.221 | 0.218 | 0.216 | 0.211 | 0.217 | 1.71 | 0.23 | -0.01 |
32 | 周富强, 刘松, 罗天林. 高频燃烧红外吸收法测定矿产品中硫[J]. 冶金分析, 2016, 36(11): 46-52. |
ZHOU Fuqiang, LIU Song, LUO Tianlin. Determination of sulfur content in mineral products by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2016, 36(11): 46-52. | |
1 | 谭习有, 黎华玲, 彭洪亮, 等. 石墨烯制备新技术及其在燃料电池催化剂中的应用[J]. 化工进展, 2013, 32(S1): 158-167. |
TAN Xiyou, LI Hualing, PENG Hongliang, et al. Progress in new preparation techniques of grapheme and application for catalysts in fuel cells[J]. Chemical Industry and Engineering Progress, 2013, 32(S1): 158-167. | |
2 | 王万兵, 高晓辉, 李怀阳, 等. 石墨烯/导电聚合物复合防腐蚀材料制备及应用研究进展[J]. 化工进展, 2020, 39(3): 1080-1089. |
WANG Wanbing, GAO Xiaohui, LI Huaiyang, et al. Progress of preparation and application of graphene/conductive polymer composite anticorrosion materials[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1080-1089. | |
33 | 程锋, 谷懿, 葛良全, 等. 原位能量色散X射线荧光分析中岩样基体效应及其修正研究[J]. 光谱学与光谱分析, 2017, 37(3): 919-923. |
CHENG Feng, GU Yi, GE Liangquan, et al. The research on matrix effect and correction technology of rock sample in-situ energy dispersive X‐ray fluorescence analysis[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 919-923. | |
3 | 张利辉, 徐宇兴, 刘振法, 等. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019, 38(2): 949-955. |
ZHANG Lihui, XU Yuxing, LIU Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 949-955. | |
4 | 高原, 李艳, 苏星光. 基于石墨烯的光学生物传感器的研究进展[J]. 分析化学, 2013, 41(2): 174-180. |
GAO Yuan, LI Yan, SU Xingguang. Development of graphene-based optical biosensor[J]. Chinese Journal of Analytical Chemistry, 2013, 41(2): 174-180. | |
34 | 袁继海, 詹秀春, 胡明月, 等. 基于元素对研究激光剥蚀-电感耦合等离子体质谱分析硫化物矿物的基体效应[J]. 光谱学与光谱分析, 2015, 35(2): 512-518. |
YUAN Jihan, ZHAN Xiuchun, HU Mingyue, et al. Characterization of matrix effects in microanalysis of sulfide minerals by laser ablation-inductively coupled plasma-mass spectrometry based on an element pair method[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 512-518. | |
5 | 马依拉·克然木, 李首城, 胡天浩, 等. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(S1): 57-61. |
MA Yila·Keranmu, LI Shoucheng, HU Tianhao, et al. Research progress of the graphene-based electrochemical biosensor[J]. Materials Reports, 2019, 33(S1): 57-61. | |
6 | 李绍娟, 甘胜, 沐浩然, 等. 石墨烯光电子器件的应用研究进展[J]. 新型炭材料, 2014, 29(5): 329-356. |
LI Shaojuan, GAN Sheng, MU Haoran, et al. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014, 29(5): 329-356. | |
7 | SONG Y W, JANG S Y, HAN W S, et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J]. Applied Physics Letters, 2010, 96(5): 051122. |
8 | 付凤艳, 张杰, 程敬泉, 等. 氧化石墨烯在燃料电池质子交换膜中的应用[J]. 化工进展, 2019, 38(5): 2233-2241. |
FU Fengyan, ZHANG Jie, CHENG Jingquan, et al. Application of graphene oxide in proton exchange membrane for fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2233-2241. | |
9 | 郭文显, 陈妹琼, 张敏, 等. α-MoC/石墨烯复合材料的氧还原性能及其在微生物燃料电池中的应用[J]. 化工进展, 2016, 35(11): 3558-3562. |
GUO Wenxian, CHEN Meiqiong, ZHANG Min, et al. Research on the oxygen reduction performance of α-MoC/graphene and its application in microbial fuel cells[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3558-3562. | |
10 | 全国钢标准化技术委员会. 炭素材料全硫含量测定方法: [S]. 北京: 中国标准出版社, 2010. |
National Steel Standardization Technical Committee. Carbon materials—Determination of the total sulphur content: [S]. Beijing: China Standard Press, 2010. | |
11 | 全国煤炭标准化技术委员会. 煤中全硫的测定方法: [S]. 北京:中国标准出版社, 2008. |
National Coal Standardization Technical Committee. Determination of total sulfur in coal: [S]. Beijing: China Standard Press, 2008. | |
12 | 机械工业填料静密封标委会. 柔性石墨板硫含量测定方法: [S]. 北京: 机械工业出版社, 2006. |
Standard Committee for Packing Static Seal of Machinery Industry. Mensuration for sulfur-content of flexible graphite sheets: [S]. Beijing: China Machinery Industry Press, 2006. | |
13 | 机械工业填料静密封标委会. 电炭制品物理化学性能试验方法——第16部分:硫含量: [S]. 北京: 机械工业出版社, 2013. |
Standard Committee for Packing Static Seal of Machinery Industry. Test method for physical-chemical properties of electrical carbon product—Part16: Sulphur content: [S]. Beijing: China Machinery Industry Press, 2013. | |
14 | 中国建筑材料工业协会. 非金属矿物和岩石化学分析方法——第5部分: 石墨矿化学分析方法: [S]. 北京: 中国建材工业出版社, 2007. |
China Building Materials Industry Association. Methods for chemical analysis of nonmetal mineral and rock Part 5: methods for chemical analysis of graphite: [S]. Beijing: China Building Materials Industry Press, 2007. | |
15 | 全国非金属矿产品及制品标准化技术委员会. 石墨化学分析方法: [S]. 北京: 中国标准出版社, 2009. |
National Non-metallic Mineral Products and Products Standardization Technical Committee. Method for chemical analysis of graphite: [S]. Beijing: China Standard Press, 2009. | |
16 | 张倩, 唐利斌, 李汝劼, 等. 氧化石墨烯的制备还原及应用进展[J]. 红外与毫米波学报, 2019, 38(1): 79-90. |
ZHANG Qian, TANG Libin, LI Rujie, et al. Graphene oxide: progress in preparation, reduction and application[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 79-90. | |
17 | BOOSTANL A F, TAHAMTAN S, JIANG Z Y, et al. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles[J]. Cornposites Part A: Applied Science and Manufacturing, 2015, 68: 155-163. |
18 | RASHAD M, PAN F, TANG A, et al. Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys[J]. Journal of Magnesium and Alloys, 2013, 1(3): 242-248. |
19 | RAZMI H, MOHAMMAD R. Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination[J]. Biosensors & Bioelectronics, 2013, 41: 498-504. |
20 | TEZERJANI M D, BENVIDI A, REZAEINASAB M, et al. An impedimeric biosensor based on a composite of graphene nanosheets and polyaniline as a suitable platform for prostate cancer sensing[J]. Analytical Methods, 2016, 8: 7507-7515. |
21 | EISSA S, LHOCINE L, SIAJ M, et al. A graphene-based label-free voltammetric immunosensor for sensitive detection of the egg allergen ovalbumin[J]. Analyst, 2013, 138: 4378-4384. |
22 | DAS S, NAYAK G C, SAHU S K, et al. Development of FeCoB/graphene oxide based microwave absorbing materials for X-band region[J]. Journal of Magnetism and Magnetic Materials, 2015, 384: 224-228. |
23 | MOITRA D, GHOSH B K, CHANDEL M, et al. Synthesis of a Ni0.8Zn0.2Fe2O4-RGO nanocomposite: an excellent magnetically separable catalyst for dye degradation and microwave absorber[J]. RSC Advances, 2016, 6: 14090-14096. |
24 | 王冰鑫, 于永波, 黄湾, 等. 硫掺杂石墨烯电催化降解偶氮染料RBK[J]. 化工进展, 2019, 38(12): 5471-5477. |
WANG Bingxin, YU Yongbo, HUANG Wang, et al. Electrocatalytic degradation of azo dye RBK5 by sulfur-doped grapheme[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5471-5477. | |
25 | 李子庆, 赫文秀, 张永强, 等. 硫氮共掺杂石墨烯的制备及其电化学性能[J]. 化工进展, 2018, 37(7): 2712-2719. |
LI Ziqing, HE Wenxiu, ZHANG Yongqiang, et al. Preparation and electrochemical properties of sulfur-nitrogen co-doped grapheme[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2712-2719. | |
26 | 杨蓉, 李兰, 王黎晴, 等. 微波法制备还原氧化石墨烯及其在锂硫电池中的应用[J]. 化工学报, 2017, 68(11): 4333-4340. |
YANG Rong, LI Lan, WANG Liqing, et al. Preparation of reduced graphene oxide by microwave method and its application in lithium-sulfur batteries[J]. CIESC Journal, 2017, 68(11): 4333-4340. | |
27 | 马兰, 余琼, 张立君, 等. 高频燃烧-红外吸收法测定锆基非晶合金中碳、硫[J]. 理化检验(化学分册), 2019, 55(6): 721-723. |
MA Lan, YU Qiong, ZHANG Lijun, et al. Determination of carbon and sulfur in zirconium-based amorphous alloy by high-frequency combustion-infrared absorption method[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2019, 55(6): 721-723. | |
28 | 杨晓倩, 谭胜楠, 戚振南, 等. 高频燃烧红外吸收法测定镍基耐蚀合金中碳和硫[J]. 冶金分析, 2020, 40(2): 46-52. |
YANG Xiaoqian, TAN Shengnan, QI Zhennan, et al. Determination of carbon and sulfur in nickel-based corrosion resistant alloy by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2020, 40(2): 46-52. | |
29 | 黄启华, 徐志强, 杨玮玮. 高频红外碳硫仪测定重晶石和黄铁矿中的硫[J]. 岩矿测试, 2017, 36(2): 130-135. |
HUANG Qihua, XU Zhiqiang, YANG Weiwei. Determination of sulfur in barite and pyrite by high frequency infrared carbon-sulfur spectrometer[J]. Rock and Mineral Analysis, 2017, 36(2): 130-135. | |
30 | 鲁毅, 柳洪超, 郭国建, 等. 高频感应燃烧-红外吸收光谱法测定碳化硅中总碳含量[J]. 理化检验(化学分册), 2015, 51(10): 1457-1459. |
LU Yi, LIU Hongchao, GUO Guojian, et al. Determination of total carbon in SiC by high frequency combustion infrared absorption method[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis, 2015, 51(10): 1457-1459. | |
31 | 陈伟锐. 高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进[J]. 岩矿测试, 2019, 38(1): 123-128. |
CHEN Weirui. Improvement of experimental conditions for the determination of sulfur in soil and stream sediments by high frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2019, 38(1) : 123-128. | |
35 | 李兰群, 尹艳清. 高频感应燃烧-红外吸收法测定复合碳硅锰铁合金中碳和硫[J]. 冶金分析, 2010, 30(6): 62-65. |
LI Lanqun, YIN Yanqing. Determination of carbon and sulfur in complex carbon ferro-silico-manganese alloy by high frequency-infrared absorption method[J]. Metallurgical Analysis, 2010, 30(6): 62-65. | |
36 | 孙启文, 周标. 高频红外法测定煤制油催化剂中的碳含量[J]. 兵器材料科学与工程, 2005(2): 60-62. |
SUN Qiwen, ZHOU Biao. Determination of carbon content in catalyst of coal liquefaction by method of HF-IR[J]. Ordnance Material Science and Engineering, 2005(2): 60-62. | |
37 | 周晓东, 李洁, 方斌, 等. 高频-红外吸收法测定稀土金属及其氧化物中的碳、硫含量[J]. 稀土, 2003(6): 33-34. |
ZHOU Xiaodong, LI Jie, FANG Bin, et al. Preparation method and technological condition effects of TCE rare earth polishing powder[J]. Chinese Rare Earths, 2003(6): 33-34. | |
38 | 陈远盘. 光谱痕量分析的检出限问题[J]. 光谱学与光谱分析, 1994(5): 105-110. |
CHEN Yuanpan. Detection limits of trace analysis in spectrometry[J]. Spectroscopy and Spectral Analysis, 1994(5): 105-110. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[3] | LI Huaquan, WANG Minghua, QIU Guibao. Behavior of sulfuric acid acidolysis of perovskite concentrates [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 536-541. |
[4] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[5] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[6] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[7] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[8] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[9] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
[10] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[11] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[12] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[13] | ZHANG Zhiwei, YANG Weixin, ZHANG Junji. Recent progress of long-wavelength-light-driven photoswitches [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4058-4075. |
[14] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[15] | ZHANG Xuewei, HUANG Yaji, XU Yueyang, CHENG Haoqiang, ZHU Zhicheng, LI Jinlei, DING Xueyu, WANG Sheng, ZHANG Rongchu. Adsorption characteristics of SO3 from coal flue gas by alkaline adsorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3855-3864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |