1 | DIELS L, VAND L N, BASTIACENS L H. New developments in treatment of heavy metal contaminated soils[J]. Reviews in Environmental Science and Biotechnology, 2002, 1(1): 75-82. | 2 | 梁明昌.农田土壤重金属含量对农产品安全的影响研究[D]. 兰州: 兰州大学, 2016. | 2 | LIANG Mingchang. Effects of heavy metals in soil of farmland on the safety of agricultural products[D]. Lanzhou: Lanzhou University, 2016. | 3 | UCHIMIYA M, BANNON D I, WARTELLE L H. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil[J]. Journal of Agricultural and Food Chemistry, 2012, 60(7): 1798-1809. | 4 | 唐行灿. 生物炭修复重金属污染土壤的研究[D]. 泰安: 山东农业大学, 2013. | 4 | TANG Xingcan. Amelioration effect of biochar on heavy metal contaminated soil[D]. Tai’an: Shandong Agricultural University, 2013. | 5 | 计海洋, 汪玉瑛, 刘玉学, 等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报, 2018, 32(11): 207-213. | 5 | JI Haiyang, WANG Yuying, LIU Yuxue, et al. Advance in preparation and application of biochar and modified biochar research[J]. Journal of Nuclear Agricultural Science, 2018, 32(11): 207-213. | 6 | 郭文娟, 梁学峰, 林大松, 等. 土壤重金属钝化修复剂生物炭对镉的吸附特性研究[J]. 环境科学, 2013, 34(9): 3716-3721. | 6 | GUO Wenjuan, LIANG Xuefeng, LIN Dasong, et al. Adsorption of Cd2+ on biochar from aqueous solutions[J]. Environmental Science, 2013, 34(9): 3716-3721. | 7 | 高瑞丽, 朱俊, 汤帆, 等. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 2016, 36(1): 251-256. | 7 | GAO Ruili, ZHU Jun, TANG Fan, et al. Fractions transformation of Cd, Pb in contaminated soil after short-term application of rice straw biochar[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 251-256. | 8 | YANG Xing, LIU Jingjing, MCGROUTHER Kim, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil[J]. Environmental Science and Pollution Research, 2016, 23: 974-984. | 9 | KOMKIENE J, BALTRENAITE E. Biochar as adsorbent for removal of heavy metal ions cadmium??, Copper??, Lead??, Zinc??] from aqueous phase[J]. International Journal of Environmental Science and Technology, 2016, 13(2): 471-482. | 10 | 甘超. 改性生物炭的表征特性及其对Cr(Ⅵ)的吸附性能研究[D]. 长沙: 湖南大学, 2016. | 10 | GAN Chao. The characterizations of the modified biochar and its adsorption capacity for chromium()[D]. Changsha: Hunan University, 2016. | 11 | KO Y H, RAMANA D K V, YU J S. Electrochemical synthesis of ZnO branched submicrorods on carbon fibers and their feasibility for environmental applications[J]. Nanoscale Research Letters, 2013, 8(1): 1-7. | 12 | ALAM M A, SHAIKH W A, ALAM M O, et al. Adsorption of As (Ⅲ) and As () from aqueous solution by modified cassia fistula (golden shower) biochar[J]. Applied Water Science, 2018, 8(7): 198-212. | 13 | ZOU Q,AN W,WU C,et al. Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition[J]. Environmental Chemistry Letters, 2018, 16(2): 615-622. | 14 | 张越, 林珈羽, 刘沅, 等. 改性生物炭对镉离子吸附性能研究[J]. 武汉科技大学学报, 2015, 39(1): 48-52. | 14 | ZHANG Yue, LIN Jiayu, LIU Yuan, et al. Adsorption of cadmiumions by chemically modified biochar[J]. Journal of Wuhan University of Science and Technology, 2015, 39(1): 48-52. | 15 | 董双快, 徐万里, 吴福飞, 等. 铁改性生物炭促进土壤砷形态转化抑制植物砷吸收[J]. 农业工程学报, 2016, 32(15): 204-212. | 15 | DONG Shuangkuai, XU Wanli, WU Fufei, et al. Fe-modified biochar improving transformation of arsenic form in soil and inhibiting its absorption of plant[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15): 204-212. | 16 | BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38(2): 68-94. | 17 | LIU Z G, ZHANG F S, WU J. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment[J]. Fuel, 2010, 89(2): 510-514. | 18 | 毛俏婷, 胡俊豪, 姚丁丁, 等. 生物炭催化生物质热化学转化利用的研究进展[J]. 化工进展, 2020, 39(4): 1302-1307. | 18 | MAO Xiaoting, HU Junhao, YAO Dingding, et al. Biochar for thermo-chemical conversion of biomass: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1302-1307. | 19 | AKIYA N,SAVAGE P E.Roles of water for chemical reactions in high temperature water[J]. Chemical Reviews, 2002, 102(8): 2725-2750. | 20 | 王秀芳. 高比表面积活性炭的制备、表征及应用[D]. 广州: 华南理工大学, 2006. | 20 | WANG Xiufang. Preparation, characterization and application of high specific surface area activated carbon[D]. Guangzhou: South China University of Technology, 2006. | 21 | 赵明静. 改性生物炭的制备及其对Pb(2+)的吸附作用[D]. 石家庄: 河北师范大学, 2017. | 21 | ZHAO Mingjing. Synthesis and adsorption properties of modified biochars for Pb2+ removal[D]. Shijiazhuang: Hebei Normal University, 2017. | 22 | 夏靖靖, 刘沅, 童仕唐, 等. 改性生物炭对Ni2+和Cu2+的吸附[J]. 化工环保, 2016, 36(4): 428-433. | 22 | XIA Jingjing, LIU Yuan, TONG Shitang, et al. Adsorption of Ni2+ and Cu2+ on modified biochar[J]. Environmental Protection of Chemical Industry, 2016, 36(4): 428-433. | 23 | 郭大勇, 商东耀, 王旭刚, 等. 改性生物炭对玉米生长发育、养分吸收和土壤理化性状的影响[J]. 河南农业科学, 2017, 46(2): 22-27. | 23 | GUO Dayong, SHANG Dongyao, WANG Xugang, et al. Effects of modified biochar on growth,nutrients uptake of maize and soil physicochemical properties[J]. Journal of Henan Agricultural Sciences, 2017, 46(2): 22-27. | 24 | DING Zhuhong, HU Xin, WAN Yongshan, et al. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests[J]. Journal of Industrial & Engineering Chemistry, 2015, 33:239-245. | 25 | KOLODY?SKA D, B?K J, KOZIOL M, et al. Investigations of heavy metal ion sorption using nanocomposites of iron-modified biochar[J]. Nanoscale Research Letters, 2017, 12(1): 433-446. | 26 | 张明明. 生物炭改性材料的制备及其对水体中六价铬的吸附机理研究[D]. 长沙: 湖南大学, 2016. | 26 | ZHANG Mingming. Research on the preparation of the modified materials of biological carbon and the adsorption mechanism of six chromium in water[D]. Changsha: Hunan University, 2016. | 27 | FRI?TáK V, RICHVEISOVá B M, VIGLA?OVá E, et al. Sorption separation of Eu and As from single-component systems by Fe-modified biochar: kinetic and equilibrium study[J]. Journal of the Iranian Chemical Society, 2017, 14(3): 521-530. | 28 | MONSER L, ADHOUM N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater[J]. Separation and Purification Technology, 2002, 26(2): 137-146. | 29 | 杨兰, 李冰, 王昌全, 等. 改性生物炭材料对稻田原状和外源镉污染土钝化效应[J]. 环境科学, 2016, 37(9): 3562-3574. | 29 | YANG Lan, LI Bing, WANG Changquan, et al. Effect of modified biochars on soil cadmium stabilization in paddy soil suffered from original or exogenous contamination[J]. Environmental Science, 2016, 37(9): 3562-3574. | 30 | 于长江. 生物炭复合材料的制备及其对重金属离子的吸附行为和机制研究[D]. 昆明: 昆明理工大学, 2018. | 30 | YU Changjiang. Preparation and characterization of biochar composites and its adsorption behavior and mechanism investigation of heavy metal ions[D]. Kunming: Kunming University of Science and Technology, 2018. | 31 | YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. | 32 | LIU Fenglin, ZUO Jiane, CHI Tong, et al. Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar[J]. Frontiers of Environmental Science and Engineering, 2015, 9(6): 1066-1075. | 33 | 孟繁健, 朱宇恩, 李华, 等. 改性生物炭负载nZVI对土壤Cr(Ⅵ)的修复差异研究[J]. 环境科学学报, 2017, 37(12): 270-278. | 33 | MENG FanJian, ZHU Yuen, LI Hua, et al.Effects of the remediation of Cr() in soil by nanoscale zero-valent iron (nZVI) with modified biochar[J]. Acta Scientiae Circumstantiae, 2017, 37(12): 4715-4723. | 34 | 肖正辉, 李学良, 邢高瞻, 等.酸处理对秸秆基活性炭电化学性能的影响[J]. 硅酸盐学报, 2011, 39(4): 596-600. | 34 | XIAO Zhenghui, LI Xueliang, XING Gaozhan, et al. Effects of acidic solution treatmen on electrochemical performance of straw based activated carbon[J]. Journal of the Chinese Ceramic Society, 2011, 39(4): 596-600. | 35 | O'CONNOR D, PENG T Y, LI G H, et al. Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil[J]. Science of the Total Environment, 2017, 621: 819-826. | 36 | 袁志辉. 改性牛粪生物炭对重金属的吸附及稳定化研究[D]. 江门: 五邑大学, 2016. | 36 | YUAN Zhihui. Study on the adsorption and stabilization of heavy metals by modified cow manure biochar[D]. Jiangmen: Wuyi University, 2016. | 37 | PATRA J M, PANDA S S, DHAL N K. Biochar as a low-cost adsorbent for heavy metal removal: a review[J]. Int. J. Res. Biosci., 2017, 6: 1-7. | 38 | 朱永琪, 董天宇, 宋江辉, 等. 生物炭影响土壤重金属生物有效性的研究进展[J]. 江苏农业科学, 2018, 46(16): 9-14. | 38 | ZHU Yongqi, DONG Tianyu, SONG Jianghui, et al. Research progress of effect of biochar on heavy metal bioavailability in soils[J]. Jiangsu Agricultural Sciences, 2018, 46(16): 9-14. | 39 | WANG H, GAO B, WANG S, et al. Removal of Pb(), Cu(), and Cd() from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J]. Bioresour. Technol., 2015, 197: 356-362. | 40 | AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99(3): 19-33. | 41 | MUKHERJE A, ZIMMERMAN A R, HARRIS W. Surface chemistry variations among a series of laboratory-produced biochars[J]. Geoderma, 2011, 163: 247-255. | 42 | QIAN L B, CHEN M F, CHEN B L. Competitive adsorption of cadmium and aluminum onto fresh and oxidized biochars during aging processes[J]. J. Soil. Sedim., 2015, 15: 1130-1138. | 43 | 李力, 陆宇超, 刘娅, 等. 玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 2012(11): 2277-2283. | 43 | LI Li, LU Yuchao, LIU Ya, et al. Adsorption mechanisms of cadmium() on biochars derived from corn straw[J]. Journal of Agro-Environment Science, 2012, 31(11): 2277-2283. | 44 | DONG X L, MA L Q, ZHU Y J, et al. Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry[J]. Environ. Sci. Technol., 2013, 47: 12156-12164. | 45 | SHAFEY E I. Removal of Zn(Ⅱ) and Hg(Ⅱ) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk[J]. J. Hazard Mater., 2010, 175: 319-327. | 46 | CAO Xinde, MA Lena, GAO Bin, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology, 2009, 43(9): 3285-3291. | 47 | MELO L C A, PUGA A P, COSCIONE A R, et al. Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar[J]. Journal of Soils and Sediments, 2016, 16(1): 226-234. | 48 | QIAN Linbo, ZHANG Wenying, YAN Jingchun, et al. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures[J]. Bioresource Technology, 2016, 206: 217-224. | 49 | UCHIMIYA M, WARTELLE L H, KLASSON K T, et al. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. Journal of Agricultural & Food Chemistry, 2011, 59(6): 2501-2510. | 50 | HUAN Liang, LU Weihua, ZHANG Yuxi, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012, 46(3): 854-862. | 51 | UCHIMIYA M, BANNON D I, WARTELLE L H, et al. Lead retention by broiler litter biochars in small arms range soil: impact of pyrolysis temperature[J]. Journal of Agricultural and Food Chemistry, 2012, 60(20): 5035-5044. | 52 | UCHIMIYA M. KLASSON K T, WARTELLE L H,et al. Influence of soil properties on heavy etal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations[J]. Chemosphere, 2011, 82(10): 1431-1437. |
|