1 | FRANZ D M, DYOTT Z E, FORREST K A, et al. Simulations of hydrogen, carbon dioxide, and small hydrocarbon sorption in a nitrogen-rich rht-metal-organic framework[J]. Physical Chemistry Chemical Physics, 2018, 20(3): 1761-1777. | 2 | 王永飞, 华贲, 李亚军. 炼厂干气的综合利用研究[J]. 现代化工, 2008, 28(2): 69-71. | 2 | WANG Y F, HUA F, LI Y J. Study on comprehensive utilization of refinery dry gas[J]. Modem Chemical Industry, 2008, 28(2): 69-71. | 3 | 高晋生, 张德祥. 甲醇制低碳烯烃的原理和技术进展[J]. 煤化工, 2006, 4: 7-13. | 3 | GAO J S, ZHANG D X. Philosophy and technical progress of methanol-based low carbon olefin[J]. Coal Chemical Industry, 2006, 4: 7-13. | 4 | 张秋萍. 气相色谱法分析天然气的组成[J]. 化学分析计量, 2018, 27(1):77-83. | 4 | ZHANG Q P. Analysis of the compositions of natural gas by gas chromatography[J]. Chemical Analysis and Meterage, 2018, 27(1):77-83. | 5 | SADRAMELI S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: a state-of-the-art review I: thermal cracking review[J]. Fuel, 2015, 140: 102-115. | 6 | SAVAGE P, BROOKS K. Refinery gases: a quick source of ethylene[J]. Chemical Week, 1988, 142(19): 16. | 7 | 聂李红, 徐绍平, 苏艳敏, 等. 低浓度煤层气提纯的研究现状[J]. 化工进展, 2008, 27(10): 1505-1511. | 7 | NIE L H, XU S P, SU Y M, et al. Progress of recovery of low concentration coal bed methane[J]. Chemical Industry and Engineering Progress, 2008, 27(10): 1505-1511. | 8 | WU Z, HAN S S, CHO S H, et al. Modification of resin-type adsorbents for ethane/ethylene separation[J]. Industrial & Engineering Chemistry Research, 1997, 36(7): 2749-2756. | 9 | BAO Z, ALNEMRAT S, YU L, et al. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal-organic framework[J]. Langmuir, 2011, 27(22): 13554-62. | 10 | 杨春生. 乙烯装置的乙炔脱除技术[J]. 乙烯工业, 1996, 8(1): 27-34. | 10 | YANG C S. Acetylene removal technology in ethylene plant[J]. Ethylene Industry, 1996, 8(1): 27-34. | 11 | 汪兰海, 陈运, 蔡跃明, 等. 冷油吸收尾气的双高变压吸附提氢技术及应用[J]. 乙烯工业, 2018, 30(1): 35-37. | 11 | WANG L H, CHEN Y, CAI Y M, et al. Double high pressure swing adsorption hydrogen extraction technology and its application of cold oil absorption tail gas[J]. Ethylene Industry, 2018, 30(1): 35-37. | 12 | 谢卫东. 炼厂气中碳二回收工艺技术选择及工业应用[J]. 石油石化绿色低碳, 2018, 3(6): 3-7. | 12 | XIE W D. Selection of C2 recovery process from refinery off-gas and its industrial application[J]. Green Petroleum & Petrochemicals, 2018, 3(6): 3-7. | 13 | CHEN X Y, KALIAGUINE S. Mixed gas and pure gas transport properties of copolyimide membranes[J]. Journal of Applied Polymer Science, 2013, 128(1): 380-389. | 14 | KWONHT, JEONGHK, LEEAS, et al. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances[J]. Journal of the American Chemical Society, 2015, 137(38):12304-12311. | 15 | NEWALKAR B L, CHOUDARY N V, KUMAR P, et al. Exploring the potential of mesoporous silica, SBA-15, as an adsorbent for light hydrocarbon separation[J]. Chemistry of Materials, 2002, 14(1): 304-309. | 16 | GUTIERREZ-SEVILLANO J J, DUBBELDAM D, REY F, et al. Analysis of the ITQ-12 zeolite performance in propane-propylene separations using a combination of experiments and molecular simulations[J]. The Journal of Physical Chemistry C, 2010, 114(35): 14907-14914. | 17 | KIM J, LIN L C, MARTIN R L, et al. Large-scale computational screening of zeolites for ethane/ethylene separation[J]. Langmuir, 2012, 28(32): 11914-11919. | 18 | HE Y, KRISHNA R, CHEN B. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons [J]. Energy & Environmental Science, 2012, 5(10): 9107-9120. | 19 | YANG R T. Adsorbents: fundamentals and applications[J]. New York: John Wiley & Sons, 2003. | 20 | CUI X, CHEN K, XING H, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295): 141-144. | 21 | CADIAU A, ADIL K, BHATT P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353: 137-140. | 22 | BAO Z B, WANG J, ZHANG Z, et al. Molecular sieving of ethane from ethylene through the molecular cross-section size differentiation in gallate-based metal-organic frameworks[J]. Angewandte Chemie: International Edition, 2018,57(49): 16020-16025. | 23 | LIN R B, LI L B, ZHOU H L, et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework[J]. Nature Materials, 2018, 17(12): 1128-1133. | 24 | WANG H, DONG X, COLOMBO V, et al. Tailor-made microporous metal-organic frameworks for the full separation of propane from propylene through selective size exclusion[J]. Advanced Materials, 2018, 30: 1805088. | 25 | WANG H, DONG X, VELASCO E, et al. One-of-a-kind: a microporous metal-organic framework capable of adsorptive separation of linear, mono- and di-branched alkane isomers via temperature- and adsorbate-dependent molecular sieving[J]. Energy Environ. Sci., 2018, 11: 1226-1231. | 26 | CHEN F, WANG Y, BAI D, et al. Selective adsorption of C2H2 and CO2 from CH4 in an isoreticular series of MOFs constructed from unsymmetrical diisophthalate linkers and the effect of alkoxy group functionalization on gas adsorption[J]. Journal of Materials Chemistry A, 2018, 6(8): 3471-3478. | 27 | BLOCH E D, QUEEN W L, KRISHNA R, et al. Hydrocarbon separations in a metal-organic framework with open iron (Ⅱ) coordination sites[J]. Science, 2012, 335(6076): 1606-1610. | 28 | HU T L, WANG H, LI B, et al. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures[J]. Nature Communications, 2015, 6: 7328. | 29 | YANG L, CUI X, ZHANG, Z, et al. An asymmetric anion-pillared metal-organic framework as a multisite adsorbent enables simultaneous removal of propyne and propadiene from propylene[J]. Angewandte Chemie: International Edition, 2018, 57: 13145-13149. | 30 | LEE C, BAE Y, JEONG N, et al. Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios[J]. Journal of the American Chemical Society, 2011, 133: 5228-5231. | 31 | LI K, OLSON D H, SEIDEL J, et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. Journal of the American Chemical Society, 2009, 131: 10368-10369. | 32 | PENG J, WANG H, OLSON D H, et al. Efficient kinetic separation of propene and propane using two microporous metal organic frameworks[J]. Chemical Communications, 2017, 53: 9332-9335. | 33 | LI L, LIN R B, WANG X, et al. Kinetic separation of propylene over propane in a microporous metal-organic framework[J]. Chemical Engineering Journal, 2018, 354: 977-982. | 34 | NIJEM N, WU H, CANEPA P, et al. Tuning the gate opening pressure of metal-organic frameworks (MOFs) for the selective separation of hydrocarbons[J]. Journal of the American Chemical Society, 2012, 134(37): 15201-15204. | 35 | FOO M L, MATSUDA R, HIJIKATA Y, et al. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2[J]. Journal of the American Chemical Society, 2016, 138: 3022-3030. | 36 | GüCüYENER C, VAN D B J, GASCON J, et al. Ethane/ethylene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism[J]. Journal of the American Chemical Society, 2010, 132(50): 17704-17706. | 37 | LI L B, LIN R B, KRISHNA R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science, 2018, 362(6413): 443-446. | 38 | YANG L, ZHOU W, LI H, et al. Reversed ethane/ethylene adsorption in a metal-organic framework via introduction of oxygen[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 593-597. | 39 | YANG S, RAMIREZ-CUESTA A J, NEWBY R, et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework[J]. Nature Chemistry, 2015, 7(2): 121. | 40 | LI B, ZHANG Y, KRISHNA R, et al. Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane[J]. Journal of the American Chemical Society, 2014, 136(24): 8654-8660. | 41 | CHEN Y, QIAO Z, WU H, et al. An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene[J]. Chemical Engineering Science, 2018, 175: 110-117. | 42 | LIN R B, WU H, LI L, et al. Boosting ethane/ethylene separation within isoreticular ultramicroporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140: 12940-12946. | 43 | WANG X, KRISHNA R, LI L, et al. Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF[J]. Chemical Engineering Journal, 2018, 346: 489-496. | 44 | GEIER S J, MASON J A, BLOCH E D, et al. Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M= Mg, Mn, Fe, Co, Ni, Zn)[J]. Chemical Science, 2013, 4(5): 2054-2061. | 45 | WANG X, LI L B, WANG Y, et al. Exploiting the pore size and functionalization effects in UiO topology structures for the separation of light hydrocarbons[J]. CrystEngComm, 2017, 19(13): 1729-1737. | 46 | XIANG S C, ZHANG Z, ZHAO C G, et al. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene[J]. Nature Communications, 2011, 2(1): 1-7. | 47 | LI B, CUI X, O'NOLAN D, et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity[J]. Advanced Materials, 2017, 29(47): 1704210. | 48 | HU T L, WANG H, LI B, et al. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures[J]. Nature Communications, 2015, 6: 7328. | 49 | LI L B, LIN R B, KRISHNA R, et al. Flexible-robust metal-organic framework for efficient removal of propyne from propylene[J]. Journal of American Chemical Society, 2017, 139(23): 7733-7736. | 50 | WEN H M, LI L B, LIN R B, et al. Fine-tuning of nano-traps in a stable metal-organic framework for highly efficient removal of propyne from propylene[J]. Journal of Materials Chemistry A, 2018, 6(16): 6931-6937. | 51 | LI L B, WEN H M, HE C, et al. A metal-organic framework with suitable pore size and specific functional sites for the removal of trace propyne from propylene[J]. Angewandte Chemie: International Edition, 2018, 130(46): 15403-15408. | 52 | PENG Y L, HE C H, PHAM T, et al. Robust microporous metal-organic frameworks for highly efficient and simultaneous removal of propyne and propadiene from propylene[J]. Angewandte Chemie: International Edition, 2019, 58(30): 10209-10214. | 53 | LI J R, SCULLEY J, ZHOU H C. Metal–organic frameworks for separations[J]. Chemical Reviews, 2011, 112(2): 869-932. | 54 | BASTIN L, BARCIA P S, HURTADO E J, et al. A microporous metal- organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption[J]. The Journal of Physical Chemistry C, 2008, 112(5): 1575-1581. | 55 | HAMON L, LLEWELLYN P L, DEVIC T, et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53 (Cr) MOF[J]. Journal of the American Chemical Society, 2009, 131(47): 17490-17499. | 56 | NUGENT P, BELMABKHOUT Y, BURD S D, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation[J]. Nature, 2013, 495(7439): 80-84. | 57 | LI L B, YANG J F, LI J P, et al. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: a detailed dynamic comparison with MIL-100 (Cr) and activated carbon[J]. Microporous and Mesoporous Materials, 2014, 198: 236-246. | 58 | LI L B, WANG Y, YANG J F, et al. Targeted capture and pressure/temperature-responsive separation in flexible metal-organic frameworks[J]. Journal of Materials Chemistry A, 2015, 3(45): 22574-22583. | 59 | 张倬铭, 杨江峰, 陈杨, 等. 一维直孔道MOFs对CH4/N2和CO2/CH4的分离[J]. 化工学报, 2015, 66(9): 3549-3555. | 59 | ZHANG Z M, YANG J F, CHEN Y, et al. Separation of CH4/N2 and CO2/CH4 mixtures in one dimension channel MOFs[J]. CIESC Journal, 2015, 66(9): 3549-3555. | 60 | LIAO P Q, ZHANG W X, ZHANG J P, et al. Efficient purification of ethylene by an ethane-trapping metal-organic framework[J]. Nature Communications, 2015, 6: 8697. | 61 | LIANG W, XU F, ZHOU X, et al. Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene[J]. Chemical Engineering Science, 2016, 148: 275-281. | 62 | 王浩人, 李东风. 炼厂干气中乙烯的回收和利用[J]. 精细与专用化学品, 2017, 25(2): 17-22. | 62 | WANG H R, LI D F. Progress in recovery and utilization techniques of ethylene in refinery off-gas[J]. Fine and Specialty Chemicals, 2017, 25(2): 17-22. | 63 | 姚日远. 催化裂化干气中乙烯回收利用的新途径[J]. 石油炼制与化工, 2014, 45(12): 47-49. | 63 | YAO R Y. New process for recovering ethylene from FCC dry gas[J]. Petroleum Processing and Petrochemicals, 2014, 45(12): 47-49. | 64 | SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. | 65 | XIANG S C, ZHANG Z, ZHAO C G, et al. Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene[J]. Nature Communications, 2011, 2: 204. | 66 | LI L, KRISHNA R, WANG Y, et al. Flexible metal-organic frameworks with discriminatory gate-opening effect for the separation of acetylene from ethylene/acetylene mixtures[J]. European Journal of Inorganic Chemistry, 2016(27): 4457-4462. | 67 | LI L, LIN R B, KRISHNA R, et al. Efficient separation of ethylene from acetylene/ethylene mixtures by a flexible-robust metal-organic framework[J]. Journal of Materials Chemistry A, 2017, 5(36): 18984-18988. | 68 | LIN R B, LI L B, WU H, et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material[J]. Journal of the American Chemical Society, 2017, 139(23): 8022-8028. | 69 | LI H, LI L B, LIN R B, et al. Microporous metal-organic framework with dual functionalities for efficient separation of acetylene from light hydrocarbon mixtures[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4897-4902. | 70 | LI L B,KRISHNA R,WANG Y,et al. Exploiting the gate opening effect in a flexible MOF for selective adsorption of propyne from C1/C2/C3 hydrocarbons[J]. Journal of Materials Chemistry A, 2016, 4: 751-755. |
|