1 | 徐汝辉, 姚耀春, 梁风. 磷基负极材料在金属离子电池中的现状与趋势[J]. 化工进展, 2019, 38(9): 4143-4155. | 1 | XU R H, YAO Y C, LIANG F. Status and development trend of phosphorus-based materials applied in metal ion battery anode[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4143-4155. | 2 | 张学谦. SnO2/石墨烯包覆棉碳纤维柔性锂离子电池负极材料的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. | 2 | ZHANG X Q. Study on SnO2/graphene coated cotton carbon fiber flexible lithium ion battery anode material[D]. Haerbin: Harbin Institute of Technology, 2017. | 3 | OXIEDO J, GILLAN M J. Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations[J]. Surface Science, 2000, 463(2): 93-101. | 4 | CUI J, YAO S S, HUANG J Q, et al. Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes[J]. Energy Storage Materials, 2017, 9: 85-95. | 5 | AO X, JING J J, RUAN Y J, et al. Honeycomb-inspired design of ultrafine SnO2@C nanospheres embedded in carbon film as anode materials for high performance lithium- and sodium-ion battery[J]. Journal of Power Sources, 2017, 359: 340-348. | 6 | HAN B, ZHANG W, GAO D, et al. Encapsulating tin oxide nanoparticles into holey carbon nanotubes by melt infiltration for superior lithium and sodium ion storage[J]. Journal of Power Sources, 2019, 449: 227564. | 7 | SAHOO M, RAMAPRABHU S. One-pot environment-friendly synthesis of boron doped graphene-SnO2 for anodic performance in Li ion battery[J]. Carbon, 2018, 127: 627-635. | 8 | XIA Y, HAN S B, ZHU Y M, et al. Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries[J]. Energy Storage Materials, 2019, 18: 125-132. | 9 | TIAN Q H, YAN J B, YANG L, et al. Fabrication of three-dimensional carbon coating for SnO2/TiO2 hybrid anode material of lithium-ion batteries[J]. Electrochimica Acta, 2018, 282: 38-47. | 10 | ZHANG S G, YUE L C, WANG M, et al. SnO2 nanoparticles confined by N-doped and CNTs-modified carbon fibers as superior anode material for sodium-ion battery[J]. Solid State Ionics, 2018, 323: 105-111. | 11 | HU X J, WANG G, WANG B B, et al. Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 355: 986-998. | 12 | FAN L L, SONG X S, XING D B, et al. Nitrogen-doping of graphene enhancing sodium storage of SnO2 anode[J]. Journal of Electroanalytical Chemistry, 2019, 833: 340-348. | 13 | DURSUN B, TOPAC E, ALIBEYLI R, et al. Fast microwave synthesis of SnO2@graphene/N-doped carbons as anode materials in sodium ion batteries[J]. Journal of Alloys and Compounds, 2017, 728: 1305-1314. | 14 | 阮筱津. NiO和SnO2基负极材料的制备及其电化学储锂性能研究[D]. 杭州: 浙江大学, 2018. | 14 | RUAN X J. Preparation of NiO and SnO2 based anode materials and their electrochemical lithium storage properties[D]. Hangzhou: Zhejiang University, 2018. | 15 | 程娅伊. 锂/钠离子电池用锡基负极材料的制备及电化学性能研究[D]. 西安: 陕西科技大学, 2018. | 15 | CHENG Y Y. Preparation and electrochemical performance of tin-based anode materials for lithium/sodium ion batteries[D]. Xi’an: Shaanxi University of Science and Technology, 2018. | 16 | LIANG J, YU X Y, ZHOU H, et al. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 53(47): 12803-12807. | 17 | TIAN Q H, ZHANG F, ZHANG W, et al. Non-smooth carbon coating porous SnO2 quasi-nanocubes towards high lithium storage[J]. Electrochimica Acta, 2019, 307: 393-402. | 18 | ZHOU X S, YU L, LOU X W. Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties[J]. Advanced Energy Materials, 2016, 6(14): 1600451. | 19 | HUANG W J, CHEN L, CHEN Y, et al. Improved reaction kinetics and reserved spacial structure of Fe3C-SnO2@void@C toward high-performance lithium storage[J]. Journal of Alloys and Compounds, 2019, 785: 925-931. | 20 | SUN L, SI H C, ZHANG Y X, et al. Sn-SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries[J]. Journal of Power Sources, 2019, 415: 126-135. | 21 | ZHAN L, ZHOU X S, LUO J, et al. Binder-free multilayered SnO2/graphene on Ni foam as a high-performance lithium ion batteries anode[J]. Ceramics International, 2019, 45(6): 6931-6936. | 22 | SAIKIA D, DEKA J R, CHOU C J, et al. 3D interpenetrating cubic mesoporous carbon supported nanosized SnO2 as an efficient anode for high performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 791: 892-904. | 23 | ZHANG W, DU R, ZHOU C G, et al. Ultrafine SnO2 aggregates in interior of porous carbon nanotubes as high-performance anode materials of lithium-ion batteries[J]. Materials Today Energy, 2019, 12: 303-310. | 24 | WU B Z, LI G H, LIU F Q. 3D SnO2/sulfonated graphene composites with interpenetrating porous structure as anode material for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21849-21854. | 25 | DENG Y F, FANG C C, CHEN G H. The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review[J]. Journal of Power Sources, 2016, 304: 81-101. | 26 | CHEN L C, MA X H, WANG M Z, et al. Hierarchical porous SnO2/reduced graphene oxide composites for high-performance lithium-ion battery anodes[J]. Electrochimica Acta, 2016, 215: 42-49. | 27 | CUI D G, ZHENG Z, PENG X, et al. Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode[J]. Journal of Power Sources, 2017, 362: 20-26. | 28 | HUANG S F, WANG M, JIA P, et al. N-graphene motivated SnO2@SnS2 heterostructure quantum dots for high performance lithium/sodium storage[J]. Energy Storage Materials, 2019, 20: 225-233. | 29 | DOU P, CAO Z Z, WANG C, et al. Multilayer Zn-doped SnO2 hollow nanospheres encapsulated in covalently interconnected three-dimensional graphene foams for high performance lithium-ion batteries[J]. Chemical Engineering Journal, 2017, 320: 405-415. | 30 | KIM D S, SHIM H W, DAR M A, et al. Revisiting the conversion reaction in ultrafine SnO2 nanoparticles for exceptionally high-capacity Li-ion battery anodes: the synergetic effect of graphene and copper[J]. Journal of Alloys and Compounds, 2018, 769: 1113-1120. | 31 | XU Z X, YUE W B, YUAN X, et al. Exceptional anodic performance of Sb-doped SnO2 nanoparticles on electrochemically exfoliated graphene for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 795: 168-176. | 32 | ZHANG L F,YANG M Y, ZHANG S L, et al. V2O5-C-SnO2 hybrid nanobelts as high performance anodes for lithium-ion batteries[J]. Scientific Reports, 2016, 6: 33597. | 33 | WANG Q S, XU J Q, SHEN G Y, et al. Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties[J]. Electrochimica Acta, 2019, 297: 879-887. | 34 | CHOI J, MYUNG Y, GU M G, et al. Nanohybrid electrodes of porous hollow SnO2 and graphene aerogel for lithium ion battery anodes[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 345-350. | 35 | BHASKAR A, DEEPA M, RAMAKRISHNA M, et al. Poly(3,4-ethylenedioxythiophene) sheath over a SnO2 hollow spheres/graphene oxide hybrid for a durable anode in Li-ion batteries[J]. The Journal of Physical Chemistry C, 2014, 118(14): 7296-7306. | 36 | HU X, ZENG G, CHEN J X, et al. 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(9): 4535-4542. | 37 | XIN W P, GAO T T, ZHANG W Q, et al. Three-dimensional hollow SnO2@TiO2 spheres encapsulated in reduced graphene oxide aerogels as promising anodes for lithium-ion storage[J]. Journal of Alloys and Compounds, 2019, 784: 157-164. | 38 | YAO W Q, WU S B, ZHAN L, et al. Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 361: 329-341. | 39 | 陈泽华, 麻鹏程, 曹建亮, 等. 锂离子电池负极材料SnO2掺杂石墨烯与多孔碳的改性研究[J]. 河南理工大学学报(自然科学版), 2018, 37(5): 142-146. | 39 | CHEN Z H, MA P C, CAO J L, et al. Study on lithium ion batteries anode material SnO2 doped with graphene and porous carbon[J]. Journal of Henan Polytechnic University (Natural Science), 2018, 37(5): 142-146. | 40 | SU W M, LIANG Y, TANG Y F. Facile situ synthesis of C@SnO2/Sn@rGO hybrid nanosheets as high performance anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2019, 801: 402-408. | 41 | HONG Y, MAO W F, HU Q Q, et al. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes[J]. Journal of Power Sources, 2019, 428: 44-52. | 42 | KONG Z, LIU X H, WANG T, et al. Three-dimensional hollow spheres of porous SnO2/rGO composite as high-performance anode for sodium ion batteries[J]. Applied Surface Science, 2019, 479: 198-208. | 43 | CHANG P Y, DOONG R A. Microwave-assisted synthesis of SnO2/mesoporous carbon core-satellite microspheres as anode material for high-rate lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 775: 214-224. | 44 | ABOUALI S, AKBARI GARAKANI M, KIM J K. Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes[J]. Electrochimica Acta, 2018, 284: 436-443. | 45 | LI X, SUN X H, GAO Z W, et al. Fabrication of porous carbon sphere@SnO2@carbon layer coating composite as high performance anode for sodium-ion batteries[J]. Applied Surface Science, 2018, 433: 713-722. | 46 | TAN Q K, KONG Z, CHEN X J, et al. Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries[J]. Applied Surface Science, 2019, 485: 314-322. | 47 | WANG K, HUANG J G. Natural cellulose derived nanofibrous Ag-nanoparticle/SnO2/carbon ternary composite as an anodic material for lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2019, 126: 155-163. | 48 | TIAN Q H, ZHANG F, YANG L. Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for high-performance lithium-ion battery anode[J]. Applied Surface Science, 2019, 481: 1377-1384. | 49 | LIU H D, HUANG J M, LI X L, et al. Flower-like SnO2/graphene composite for high-capacity lithium storage[J]. Applied Surface Science, 2012, 258(11): 4917-4921. | 50 | CHOI J H, PARK G D, JUNG D S, et al. Pitch-derived carbon coated SnO2-CoO yolk-shell microspheres with excellent long-term cycling and rate performances as anode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2019, 369: 726-735. | 51 | LIU X, JIANG Y H, LI K F, et al. Electrospun free-standing N-doped C@SnO2 anode paper for flexible Li-ion batteries[J]. Materials Research Bulletin, 2019, 109: 41-48. | 52 | JIANG S, ZHAO B, RAN R, et al. A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage[J]. RSC Adv., 2014, 4(18): 9367-9371. | 53 | WANG Y, JIN Y H, ZHAO C C, et al. 1D ultrafine SnO2 nanorods anchored on 3D graphene aerogels with hierarchical porous structures for high-performance lithium/sodium storage[J]. Journal of Colloid and Interface Science, 2018, 532: 352-362. | 54 | TIAN Q H, TIAN Y, ZHANG Z X, et al. Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries[J]. Journal of Power Sources, 2015, 291: 173-180. | 55 | WU P, XU X L, ZHU Q Y, et al. Self-assembled graphene-wrapped SnO2 nanotubes nanohybrid as a high-performance anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2015, 626: 234-238. | 56 | JIA R, YUE J L, XIA Q Y, et al. Carbon shelled porous SnO2-δ nanosheet arrays as advanced anodes for lithium-ion batteries[J]. Energy Storage Materials, 2018, 13: 303-311. | 57 | KIM A, KIM J S, HUDAYA C, et al. An elastic carbon layer on echeveria-inspired SnO2 anode for long-cycle and high-rate lithium ion batteries[J]. Carbon, 2015, 94: 539-547. | 58 | LU X X, WU G L, XIONG Q Q, et al. A novel microstructural reconstruction phenomenon and electrochemical performance of cactus-like SnO2/carbon composites as anode materials for Na-ion batteries[J]. Electrochimica Acta, 2017, 245: 587-596. | 59 | MA C, JIANG J L, HAN Y J, et al. The composite of carbon nanotube connecting SnO2/reduced graphene clusters as highly reversible anode material for lithium-/sodium-ion batteries and full cell[J]. Composites Part B: Engineering, 2019, 169: 109-117. | 60 | WANG M Y, WAG X L, YAO Z J, et al. Molybdenum-doped tin oxide nanoflake arrays anchored on carbon foam as flexible anodes for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2020, 560: 169-176. | 61 | ZHU J, DENG D. Uniform distribution of 1-D SnO2 nanorod arrays anchored on 2-D graphene sheets for reversible sodium storage[J]. Chemical Engineering Science, 2016, 154: 54-60. | 62 | CHANG L M, YI Z, WANG Z M, et al. Ultrathin SnO2 nanosheets anchored on graphene with improved electrochemical kinetics for reversible lithium and sodium storage[J]. Applied Surface Science, 2019, 484: 646-654. | 63 | LIU Y H, FANG X, GE M Y, et al. SnO2 coated carbon cloth with surface modification as Na-ion battery anode[J]. Nano Energy, 2015, 16: 399-407. |
|