Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (07): 3013-3027.DOI: 10.16085/j.issn.1000-6613.2018-1366
• Invited review • Previous Articles Next Articles
Jinmei HE(),Jiao HE,Mingjuan YUAN,Menghui XUE,Xiangrong LIU,Mengnan QU()
Received:
2018-07-04
Online:
2019-07-05
Published:
2019-07-05
Contact:
Mengnan QU
通讯作者:
屈孟男
作者简介:
何金梅(1981—),女,副教授,研究方向为仿生功能界面材料。E-mail:<email>jinmhe@gmail.com</email>。
基金资助:
CLC Number:
Jinmei HE, Jiao HE, Mingjuan YUAN, Menghui XUE, Xiangrong LIU, Mengnan QU. Research progress of superhydrophobic materials with high-stability property[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3013-3027.
何金梅, 何姣, 袁明娟, 薛萌辉, 刘向荣, 屈孟男. 高稳定性超疏水材料研究进展[J]. 化工进展, 2019, 38(07): 3013-3027.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1366
1 | WANGYang, LIUXiaowei, ZHANGHaifeng, et al. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates[J]. AIP Advances, 2015, 5(4): 202-208. |
2 | JINMeihua, FENGXinjian, FENGLin, et al. Superhydrophobic aligned polystyrene nanotube films with high adhesive force[J]. Advanced Materials, 2010, 17(16): 1977-1981. |
3 | LIXuemei, REINHOUDTD, CREGO-CALAMAM. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 38(44): 1350-1368. |
4 | WANGJing, ZHANGCong, YANGChunming, et al. Superhydrophilic antireflective periodic mesoporous organosilica coating on flexible polyimide substrate with strong abrasion-resistance[J]. ACS Applied Materials & Interfaces, 2017, 9(6): 5468-5476. |
5 | LVJianyong, SONGYanlin, JIANGLei, et al. Bio-inspired strategies for anti-icing[J]. ACS Nano, 2014, 8(4): 3152-3169. |
6 | WENLiping, TIANYe, JIANGLei. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie: International Edition, 2015, 54(11): 3387-3399. |
7 | PhilseokKIM, WONG Tak Sing, JackALVARENGA, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8): 6569-6577. |
8 | HOWARTER JohnA, YOUNGBLOOD JeffreyP. Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes[J]. Advanced Materials, 2007, 19(22): 3838-3843. |
9 | ReinerFURSTNER, WilhelmBARTHLOTT, ChristophNEINHUIS, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21(3): 956-961. |
10 | WENGChengjian, CHANGChihao, PENGChihwei, et al. Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability[J]. Chemistry of Materials, 2011, 23(8): 2075-2083. |
11 | PADTURE NitinP, MauriceGELL, JORDAN EricH. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284. |
12 | LUYao, SanjayanSATHASIVAM, SONGJinlong, et al. Creating superhydrophobic mild steel surfaces for water proofing and oil-water separation[J]. Journal of Materials Chemistry A, 2014, 2(30): 11628-11634. |
13 | EPSTEIN AlexanderK, WONG Tak Sing, BELISLE RebeccaA, et al. Liquid-infused structured surfaces with exceptional anti-biofouling performance[J]. Proceedings of the National Academy of Sciences, 2012, 109(33): 13182-13187. |
14 | GUOHongxia, YiwenMA, QINZhenping, et al. One step transformation from hierarchical-structured superhydrophilic NF membrane into superhydrophobic OSN membrane with improved anti-fouling effect[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23379-23388. |
15 | ZekeriyyaGEMICI, HiroomiSHIMOMURA, COHEN RobertE, et al. Hydrothermal treatment of nanoparticle thin films for enhanced mechanical durability[J]. Langmuir, 2008, 24(5): 2168-2177. |
16 | ZHANGYaoyao, GEQuan, YANGLonglai, et al. Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores[J]. Applied Surface Science, 2015, 339(2015): 151-157. |
17 | HandongCHO, DongseobKIM, ChangwooLEE, et al. A simple fabrication method for mechanically robust superhydrophobic surface by hierarchical aluminum hydroxide structures[J]. Current Applied Physics, 2013, 13(2013): 762-767. |
18 | PanneerselvamVENGATESH, KULANDAINATHAN Manickam Anbu. Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1516-1526. |
19 | FENGLin, LIShuhong, LIYingshun, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(21): 1857-1860. |
20 | GAOLichao, MCCARTHY ThomasJ. The “lotus effect” explained: two reasons why two length scales of topography are important[J]. Langmuir, 2006, 22(7): 2966-2967. |
21 | ToktamREZAYI, ENTEZARI MohammadH. Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition[J]. Journal of Colloid & Interface Science, 2016, 463(1): 37-45. |
22 | ZHENGShunli, LICheng, FUQitao, et al. Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance[J]. Surface & Coatings Technology, 2015, 276(25): 341-348. |
23 | YUANJing, WANGJihui, ZHANGKaili, et al. Fabrication and properties of a superhydrophobic film on an electroless plated magnesium alloy[J]. RSC Advances, 2017, 7(46): 28909-28917. |
24 | SUFenghua, YAOKai. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8762-8770. |
25 | ZHANGQinghua, JINBiyu, WANGBing, et al. Fabrication of a highly stable superhydrophobic surface with dual-scale structure and its antifrosting properties[J]. Industrial & Engineering Chemistry Research, 2017, 56(10): 2754-2763. |
26 | WANGNan, XIONGDangsheng, DENGYaling, et al. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces, 2015, 7(11): 6260-6272. |
27 | LIUJing, WANGLi, WANGNu, et al. A robust Cu(OH)2 nanoneedles mesh with tunable wettability for nonaqueous multiphase liquid separation[J]. Small, 2017, 13(4): 499-505. |
28 | TuukkaVERHO, ChrisBOWER, PiersANDREW, et al. Mechanically durable superhydrophobic surfaces[J]. Advanced Materials, 2010, 23(5): 673-678. |
29 | RaymondCAMPOS, GUENTHNER AndrewJ, MEULER AdamJ, et al. Superoleophobic surfaces through control of sprayed-on stochastic topography[J]. Langmuir, 2012, 28(25): 9834-9841. |
30 | PENGShan, YANGXiaojun, TIANDong, et al. Chemically stable and mechanically durable superamphiphobic aluminum surface with a micro/nanoscale binary structure[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 15188-15197. |
31 | XULigang, GENGZhi, HEJunhui, et al. Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9029-9025. |
32 | ZHANGXia, GUOYonggang, ZHANGZhijun, et al. Facile approach for preparation of stable water-repellent nanoparticle coating[J]. Applied Surface Science, 2012, 258(20): 7907-7911. |
33 | DIKIĆT, MINGW, BENTHEM R A T MVAN, et al. Self-replenishing surfaces[J]. Advanced Materials, 2012, 24(27): 3701-3704. |
34 | NaoyukiYOKOI, KengoMANABE, MizukiTENJIMBAYASHI, et al. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4809-4816. |
35 | XUQianfeng, BikashMONDAL, LYONS AianM. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method[J]. ACS Applied Materials & Interfaces, 2011, 3(9): 3508-3514. |
36 | AlexanderDAVIS, SalvatoreSURDO, GianvitoCAPUTO, et al. Environmentally benign production of stretchable and robust superhydrophobic silicone monoliths[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2907-2917. |
37 | WANGPeng, SUNBo, YAOTao, et al. A novel dissolution and resolidification method for preparing robust superhydrophobic polystyrene/silica composite[J]. Chemical Engineering Journal, 2017, 326(15): 1066-1073. |
38 | EeroHUOVINEN, JanneHIRVI, MikaSUVANTO, et al. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces[J]. Langmuir, 2012, 28(41): 14747-14755. |
39 | SindhuDOPPALAPUDI, AnjaliJAIN, WahidKHAN, et al. Biodegradable polymers-an overview[J]. Polymers for Advanced Technologies, 2014, 25(5): 427-435. |
40 | ZHOUHua, WANGHangxia, NIUHaitao, et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating[J]. Advanced Materials, 2012, 24(18): 2409-2412. |
41 | ZHAOHong, Kock YeeLAW. Super toner and ink repellent superoleophobic surface[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 4288-4295. |
42 | Min JungKIM, JEON Zn Yup, Jeong MinSEO, et al. Graphene phosphonic acid as an efficient flame retardant[J]. ACS Nano, 2014, 8(3): 2820-2825. |
43 | CHENShanshan, LIXiang, LIYang, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015, 9(4): 4070-4076. |
44 | JINHua, TIANXunlin, OlliIKKALA, et al. Preservation of superhydrophobic and superoleophobic properties upon wear damage[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 485-488. |
45 | JunfeiOU, HUWeihua, XUEMingshan, et al. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3101-3107. |
46 | ZHANGWenbo, XIANGTianhao, FENGLiu, et al. Facile design and fabrication of superwetting surfaces with excellent wear-resistance[J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15776-15784. |
47 | ZHOUHua, WANGHongxia, NIUHaitao, et al. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles[J]. Advanced Functional Materials, 2013, 23(13): 1664-1670. |
48 | XULebo, KARUNAKARAN RaghuramanG, GUOJia, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1118-1125. |
49 | LIUKesong, CAOMoyuan, AkiraFUJISHIMA, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094. |
50 | GUJincui, XIAOPeng, CHENPeng, et al. Functionalization of biodegradable PLA non-woven fabric as superoleophilic and superhydrophobic material for efficient oil absorption and oil/water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 5968-5973. |
51 | ZHOUCailong, CHENZhaodan, YANGHao, et al. A nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9184-9194. |
52 | QUMengnan, HOULingang, HEJinmei, et al. Facile process for the fabrication of durable superhydrophobic fabric with oil/water separation property[J]. Fibers & Polymers, 2016, 17(12): 2062-2068. |
53 | RATHER Adil Majeed, UttamMANNA. Stretchable and durable superhydrophobicity that acts both in air and under oil[J]. Journal of Materials Chemistry A, 2017, 5(29): 15208-15216. |
54 | YEHui, ZHULiqun, LIWeiping, et al. Constructing fluorine-free and cost-effective superhydrophobic surface with normal-alcohol-modified hydrophobic SiO2 nanoparticles[J]. ACS Applied Materials & Interfaces, 2016, 9(1): 858-867. |
55 | QUMengnan, LIUShanshan, HEJinmei, et al. Fabrication of recyclable superhydrophobic materials with self-cleaning and mechanically durable properties on various substrates by quartz sand and polyvinylchloride[J]. RSC Advances, 2016, 6(82): 79238-79244. |
56 | CHENKunlin, GUKun, QIANGSiyu, et al. Environmental stimuli-responsive self-repairing waterbased superhydrophobic coatings[J]. RSC Advances, 2017, 7(1): 543-550. |
57 | QUMengnan, LIUShanshan, HEJinmei, et al. Fabrication of recyclable and durable superhydrophobic materials with wear/corrosion-resistance properties from kaolin and polyvinylchloride[J]. Applied Surface Science, 2017, 410(15): 399-307. |
58 | HEJinmei, HEJiao, KANGJie, et al. Facile fabrication of durable superhydrophobic materials from mineral soil with wear-resistance[J]. Nanoscience and Nanotechnology Letters, 2018, 10(4): 486-490. |
59 | NINE MdJ, COLE MartinA, LucasJOHNSON, et al. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28482-28493. |
60 | PENGChaoyi, CHENZhuyang, TIWARI ManishK. All-organic superhydrophobic coatings with mecanochemcal robusness and liquid imaement resistance[J]. Nature Materials, 2018, 10: 355-360. |
61 | LIKunquan, ZENGXingrong, LAIXuejun, et al. Study on the anti-abrasion resistance of superhydrophobic coatings based on fluorine-containing acrylates with different Tg and SiO2[J]. RSC Advances, 2017, 7(75): 47738-47745. |
62 | LUYao, SanjayanSATHASIVAM, SONGJinlong, et al. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science, 2015, 347(6226): 1132-1135. |
63 | CHENLiang, SUNXiaoying, HANGJianzhong, et al. Large-scale fabrication of robust superhydrophobic coatings with high rigidity and good flexibility[J]. Advanced Materials Interfaces, 2016, 3(6): 1500718. |
64 | BAIXue, XUEChaohua, JIAShuntian. Surfaces with sustainable superhydrophobicity upon mechanical abrasion[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28171-28179. |
65 | LONGMengying, PENGShan, YANGXiaojun, et al. One-step fabrication of non-fluorinated transparent super-repellent surfaces with tunable wettability functioning in both air and oil[J]. ACS Applied. Materials & Interfaces, 2017, 9(18): 15857-15867. |
66 | HWANG Gi Byoung, AdnanPATIR, ElaineALLAN, et al. Superhydrophobic and white light-activated bactericidal surface through a simple coating[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29002-29009. |
67 | FUYuchen, JINBiyu, ZHANGQinghua, et al. pH-Induced switchable superwettability of efficient antibacterial fabrics for durable selective oil/water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 30161-30170. |
68 | MINGPeng, SONGZhaofei, GONGShanshan, et al. Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite[J]. Journal of Materials Chemistry A, 2015, 3(42): 21194-21200. |
69 | AndreasWALTHER, IngelaBJURHAGER, MALHO Jani Markus, et al. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways[J]. Nano Letters, 2010, 10(8): 2742-2748. |
70 | YAOHongbin, TANZhihua, FANGHaiyu, et al. Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks[J]. Angewandte Chemie, 2010, 52(122): 10325-10329. |
71 | NAIRR R, WUH A, JAYARAMP N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
72 | ZHANGWenbin, ZHUYuzhang, LIUXia, et al. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions[J]. Angewandte Chemie, 2014, 126(3): 875-879. |
73 | SONGWeili, GUANXiaotian, FANLizhen, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding[J]. Journal of Materials Chemistry A, 2015, 3(5): 2097-2107. |
74 | CHENChengmeng, YANGQuanhong, YANGYonggang, et al. Self-assembled free-standing graphite oxide membrane[J]. Advanced Materials, 2010, 21(29): 3007-3011. |
75 | CHENHongyuan, KANGYiran, CAIFeng, et al. Electrochemical conversion of Ni2(OH)2CO3 into Ni(OH)2 hierarchical nanostructures loaded on a carbon nanotube paper with high electrochemical energy storage performance[J]. Journal of Materials Chemistry A, 2015, 3(5): 1875-1878. |
76 | LILester, VictorBREEDVELD, HESS DennisW. Design and fabrication of superamphiphobic paper surfaces[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 5381-5386. |
77 | WANGSuhao, LIMei, LUQinghua. Filter paper with selective absorption and separation of liquids that differ in surface tension[J]. ACS Applied Materials & Interfaces, 2010, 2(3): 677-683. |
78 | CHENFeifei, ZHUYingjie, XIONGZhichao, et al. Highly flexible superhydrophobic and fire-resistant layered inorganic paper[J]. ACS Applied Materials & Interfaces, 2016, 8(50): 34715-34724. |
79 | WANGShanlin, YUXinquan, ZHANGYoufa. Large-scale fabrication of translucent, stretchable and durable superhydrophobic composite films[J]. Journal of Materials Chemistry A, 2017, 4(45): 23489-23496. |
[1] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[2] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[3] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[4] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[5] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[6] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[7] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[8] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[9] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[10] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[11] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[12] | LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. |
[13] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[14] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[15] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |