Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (08): 3852-3865.DOI: 10.16085/j.issn.1000-6613.2018-2097
• Resources and environmental engineering • Previous Articles Next Articles
Yun CHENG1(),Xinye WANG1(),Wenting LÜ1,Yaji HUANG2,Hao XIE1,3,Ruojun GUO4,Guilin PIAO1
Received:
2018-10-24
Online:
2019-08-05
Published:
2019-08-05
Contact:
Xinye WANG
程运1(),王昕晔1(),吕文婷1,黄亚继2,谢浩1,3,郭若军4,朴桂林1
通讯作者:
王昕晔
作者简介:
程运(1995—),男,硕士研究生,研究方向为重金属高温吸附技术。E-mail:基金资助:
CLC Number:
Yun CHENG,Xinye WANG,Wenting LÜ,Yaji HUANG,Hao XIE,Ruojun GUO,Guilin PIAO. A review on heavy and alkali metals adsorption by kaolin athigh temperature[J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3852-3865.
程运,王昕晔,吕文婷,黄亚继,谢浩,郭若军,朴桂林. 高岭土高温吸附重金属和碱金属的研究进展[J]. 化工进展, 2019, 38(08): 3852-3865.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2097
温度/℃ | 加热速率/℃·s-1 | 停留时间 | 脱羟基率/% | 气氛 | 参考文献 |
---|---|---|---|---|---|
450 500 550 550 700 1000 1200 1000 900 1050 1200 | 缓慢煅烧 缓慢煅烧 缓慢煅烧 闪煅 4700 4700 4700 4700 15000 15000 15000 | 2 h 2 h 2 h 0.54 s 0.5 s 0.5 s 0.5 s 1.5 s 0.5 s 0.5 s 0.5 s | 16 63 71 15 16 41 30 81 59 80 87 | 空气 空气 空气 空气 氦气 氮气 氦气 氮气 氦气 氮气 氦气 | [ [ [ [ [ [ [ [ [ [ [ |
温度/℃ | 加热速率/℃·s-1 | 停留时间 | 脱羟基率/% | 气氛 | 参考文献 |
---|---|---|---|---|---|
450 500 550 550 700 1000 1200 1000 900 1050 1200 | 缓慢煅烧 缓慢煅烧 缓慢煅烧 闪煅 4700 4700 4700 4700 15000 15000 15000 | 2 h 2 h 2 h 0.54 s 0.5 s 0.5 s 0.5 s 1.5 s 0.5 s 0.5 s 0.5 s | 16 63 71 15 16 41 30 81 59 80 87 | 空气 空气 空气 空气 氦气 氮气 氦气 氮气 氦气 氮气 氦气 | [ [ [ [ [ [ [ [ [ [ [ |
固体燃料 | 炉型 | 燃烧温度/℃ | 减排对象 | 高岭土添加量占固体燃料的质量分数/% | 排放控制效率/% | 参考文献 |
---|---|---|---|---|---|---|
干污泥颗粒 | 沉降炉 | 800 | 亚微米Pb/亚微米Cd | 5 | 约10/约10 | [ |
875 | 约22/约17 | |||||
950 | 51/40 | |||||
煤粉 | 沉降炉 | 1500 | PM0.2 | 3 | 17 | [ |
1000MW | — | PM0.3 | 2.5 | 56 | [ | |
PM2.5 | 6 | |||||
富钾煤 | 沉降炉 | 900 | PM1 | 11 | 23 | [ |
1100 | 38 | |||||
1300 | 5 | |||||
添加重金属的木屑 | 流化床 | 850 | 亚微米Pb/亚微米Cd | 1 | 25/1 | [ |
3 | 42/4 | |||||
5 | 43/8 | |||||
950 | 1 | 50/11 | [ | |||
3 | 60/12 | |||||
5 | 61/10 |
固体燃料 | 炉型 | 燃烧温度/℃ | 减排对象 | 高岭土添加量占固体燃料的质量分数/% | 排放控制效率/% | 参考文献 |
---|---|---|---|---|---|---|
干污泥颗粒 | 沉降炉 | 800 | 亚微米Pb/亚微米Cd | 5 | 约10/约10 | [ |
875 | 约22/约17 | |||||
950 | 51/40 | |||||
煤粉 | 沉降炉 | 1500 | PM0.2 | 3 | 17 | [ |
1000MW | — | PM0.3 | 2.5 | 56 | [ | |
PM2.5 | 6 | |||||
富钾煤 | 沉降炉 | 900 | PM1 | 11 | 23 | [ |
1100 | 38 | |||||
1300 | 5 | |||||
添加重金属的木屑 | 流化床 | 850 | 亚微米Pb/亚微米Cd | 1 | 25/1 | [ |
3 | 42/4 | |||||
5 | 43/8 | |||||
950 | 1 | 50/11 | [ | |||
3 | 60/12 | |||||
5 | 61/10 |
用途 | 煅烧温度 | 原理 |
---|---|---|
合成分子筛和铝盐化工 | 700℃左右 | 低温煅烧生成的偏高岭土活性高,有利于硅铝酸盐合成分子筛 |
PVC电缆料配料 | <850℃ | 增加高岭土孔隙,增强复合材料电绝缘性能 |
造纸填料和涂料添加成分 | 1000℃左右 | 去除高岭土中杂质碳增加白度,增加孔隙率增强其吸油性能 |
耐火材料填料、玻璃钢增强填料、陶瓷窑具和高级陶瓷胚料的配料以及精密铸件模型 | 1300~1525℃ | 高温后向稳定的莫来石转变 |
用途 | 煅烧温度 | 原理 |
---|---|---|
合成分子筛和铝盐化工 | 700℃左右 | 低温煅烧生成的偏高岭土活性高,有利于硅铝酸盐合成分子筛 |
PVC电缆料配料 | <850℃ | 增加高岭土孔隙,增强复合材料电绝缘性能 |
造纸填料和涂料添加成分 | 1000℃左右 | 去除高岭土中杂质碳增加白度,增加孔隙率增强其吸油性能 |
耐火材料填料、玻璃钢增强填料、陶瓷窑具和高级陶瓷胚料的配料以及精密铸件模型 | 1300~1525℃ | 高温后向稳定的莫来石转变 |
1 | 陈媛, 许杨, 盛昌栋 . 准东煤热解、燃烧和气化过程中Na的行为及高岭土的捕获作用[J]. 中国电机工程学报, 2016, 36(16): 4396-4401. |
CHEN Yuan , XU Yang , SHENG Changdong . Behavior of Na and its capture by adding kaolin during devolatilization, combustion and gasification of Zhundong coal[J].Proceedings of the Chinese Society of Electrical Engineering, 2016, 36(16): 4396-4401. | |
2 | 张艳平, 金保升 . 生物质热化学转化过程中碱金属问题的相关研究[J]. 能源研究与利用, 2007 (3): 27-31. |
ZHANG Yanping , JIN Baosheng . Research on alkali metals in biomass thermo-chemical conversion process[J]. Energy Research & Utilization, 2007 (3): 27-31. | |
3 | YAN L , GUPTA R P , WALL T F . The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverised coal combustion[J]. Fuel, 2001, 80(9): 1333-1340. |
4 | ZHANG L , NINOMIYA Y , YAMASHITA T . Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature[J]. Fuel, 2006, 85(10): 1446-1457. |
5 | GALE T K , WENDT J O L . Mechanisms and models describing sodium and lead scavenging by a kaolinite aerosol at high temperatures[J]. Aerosol Science and Technology, 2003, 37(11): 865-876. |
6 | YI H , HAO J , DUAN L , et al . Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008, 87(10): 2050-2057. |
7 | YI H , GUO X , HAO J , et al . Characteristics of inhalable particulate matter concentration and size distribution from power plants in China[J]. Journal of the Air & Waste Management Association, 2006, 56(9): 1243-1251. |
8 | 徐明厚, 于敦喜, 刘小伟 . 燃煤可吸入颗粒物的形成与排放 [M]. 北京: 科学出版社, 2009. |
XU Minghou , YU Dunxi , LIU Xiaowe . Formation and emission of coal inhalable particulate matter [M]. Beijing: Science Press, 2009. | |
9 | HEAL M R , HIBBS L R , AGIUS R M , et al . Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK[J]. Atmospheric Environment, 2005, 39(8): 1417-1430. |
10 | 杨复沫, 马永亮, 贺克斌 . 细微大气颗粒物PM2.5及其研究概况[J]. 世界环境, 2000 (4): 32-34. |
YANG Fumo , Yongliang MA , HE Kebin . A brief introduction to PM2.5 and related research[J]. World Environment, 2000 (4): 32-34. | |
11 | MANALIS N , GRIVAS G , PROTONOTARIOS V , et al . Toxic metal content of particulate matter (PM10), within the greater area of athens[J]. Chemosphere, 2005, 60(4): 557-566. |
12 | WENDT J O L , LEE S J . High-temperature sorbents for Hg, Cd, Pb, and other trace metals: mechanisms and applications[J]. Fuel, 2010, 89(4): 894-903. |
13 | 高洪亮, 周劲松, 骆仲泱, 等 . 燃煤烟气中汞在活性炭上的吸附特性[J]. 煤炭科学技术, 2006, 34(5): 49-52. |
GAO Hongliang , ZHOU Jinshong , LUO Zhongyang , et al . Mercury adsorption characteristics of activated carbon in coal-fired flue gas[J]. Coal Science and Technology, 2006, 34(5): 49-52. | |
14 | GALE T K , WENDT J O L . In-furnace capture of cadmium and other semi-volatile metals by sorbents[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2999-3007. |
15 | WHITE C E , PROVIS J L , PROFFEN T , et al . Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation[J]. The Journal of Physical Chemistry A, 2010, 114(14): 4988-4996. |
16 | SPERINCK S , RAITERI P , MARKS N , et al . Dehydroxylation of kaolinite to metakaolin—A molecular dynamics study [J]. Journal of Materials Chemistry, 2011, 21(7): 1-10. |
17 | 李佑楚, 黄长雄, 卢旭晨, 等 . 煤系高岭土及其快速悬浮煅烧新工艺[J]. 非金属矿, 2000 (3): 25-27. |
LI Youchu , HUANG Changxiong , LU Xuchen , et al . Coal-series kaolin and its new technology of fast suspension calcination[J]. Non-metallic Mines, 2000 (3): 25-27. | |
18 | PT CEK P, SOUKAL F , OPRAVIL T , et al . The kinetic analysis of the thermal decomposition of kaolin by DTG technique[J]. Powder Technology, 2011, 208(1): 20-25. |
19 | CHENG H , LIU Q , YANG J , et al . The thermal behavior of kaolinite intercalation complexes—A review[J]. Thermochimica Acta, 2012, 545(19):1-13. |
20 | SLADE R C T , DAVIES T W , ATAK L H , et al . Flash calcines of kaolinite: effect of process variables on physical characteristics[J]. Journal of materials science, 1992, 27(9): 2490-2500. |
21 | NICOLAS R SAN , CYR M, ESCADEILLAS G . Characteristics and applications of flash metakaolins[J]. Applied Clay Science, 2013, 84(83):253-262. |
22 | MEINHOLD R H , ATAKUL H , DAVIESB T W , et al . Flash calcines of kaolinite: kinetics of isothermal dehydroxylation of partially dehydroxylated flash calcines and of flash calcination itself[J]. Journal of Materials Chemistry, 1992, 2(9): 913-921. |
23 | ZHANG X , LIU H , XING H , et al . Improved sodium adsorption by modified kaolinite at high temperature using intercalation-exfoliation method[J]. Fuel, 2017, 191:198-203. |
24 | CHEN D , LIU X , WANG C , et al . Effects of H2O and HCl on particulate matter reduction by kaolin under oxy-coal combustion[J]. Energy Fuel, 2017, 31(6): 6455-6462. |
25 | UBEROI M , SHADMAN F . Simultaneous condensation and reaction of metal compound vapors in porous solids[J]. Ind. Energy Chem. Res., 1991, 30:624-631. |
26 | SCOTTO M V , UBEROI M , PETERSON T W , et al . Metal capture by sorbents in combustion processes[J]. Fuel Processing Technology, 1994, 39(1/2/3): 357-372. |
27 | GASPARINI E , TARANTINO S C , GHIGNA P , et al . Thermal dehydroxylation of kaolinite under isothermal conditions[J]. Applied Clay Science, 2013, 80/81: 417-425. |
28 | SALVADOR S . Pozzolanic properties of flash-calcined kaolinite: a comparative study with soak-calcined products[J]. Cement and Concrete Research, 1995, 25(1): 102-112. |
29 | 蔡旭 . 生活垃圾热处置过程中重金属形态及迁移转化特性[D]. 杭州: 浙江大学, 2015. |
CAI Xu . The speciation and partitioning of heavy metal during municipal solid waste thermal treatment[D]. Hangzhou: Zhejiang University, 2015. | |
30 | 任松彦 . 城市生活垃圾在焚烧过程中的重金属迁移特性研究[D]. 广州: 华南理工大学, 2013. |
REN Songyan . Heavy metal transport characteristics of municipal solid waste in the incineration process[D]. Guangzhou: South China University of Technology, 2013. | |
31 | 王昕晔, 黄亚继, 仲兆平, 等 . 炉内添加剂对垃圾焚烧过程中重金属捕集影响的试验研究[J]. 中国电机工程学报, 2012, 32(32): 15-21. |
WANG Xinye , HUANG Yaji , ZHONG Zhaoping , et al . Experimental study on the capture of heavy metals by in-furnace additives during MSW incineration[J]. Proceedings of the Chinese Society of Electrical Engineering, 2012, 32(32): 15-21. | |
32 | 任松彦, 马晓茜, 谢泽琼 . 城市生活垃圾焚烧重金属的迁移特性[J]. 环境化学, 2012, 31(11): 1821-1822. |
REN Songyan , Xiaoqian MA , XIE Zeqiong . Heavy metal transport characteristics of municipal solid waste in the incineration process[J]. Environmental Chemistry, 2012, 31(11): 1821-1822. | |
33 | 涂圣康, 张守玉, 施大钟, 等 . 添加剂对高钠煤热解过程中钠析出的影响[J]. 煤炭转化, 2016, 39(1): 31-34. |
TU Shengkang , ZHANG Shouyu , SHI Dazhong , et al . Effect of additive on emission of sodium in high-sodium coal during pyrolysis[J]. Coal Conversion, 2016, 39(1): 31-34. | |
34 | 张晓羽 . 准东煤燃烧气化过程中钠的迁移规律研究[D]. 北京:中国科学院研究生院, 2015. |
ZHANG Xiaoyu . Study on the transformation of sodium during the combustion and gasification of Zhundong coal[D]. Beijing: University of Chinese Academy of Sciences, 2015. | |
35 | CHEN J , YAO H , ZHANG P A , et al . Control of PM1 by kaolin or limestone during O2/CO2 pulverized coal combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2837-2843. |
36 | 王超, 盛昌栋, 周科, 等 . 褐煤O2/CO2燃烧时可吸入颗粒物中碱性金属分布特性[J]. 工程热物理学报, 2009 (7): 1241-1244. |
WANG Chao , SHENG Changdong , ZHOU Ke , et al . Distributions of basic metal elements in inhalable particulate matter during O2/CO2 combustion of lignite[J]. Journal of Engineering Thermophysics, 2009 (7): 1241-1244. | |
37 | YAO H , NARUSE I . Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J]. Particuology, 2009, 7(6): 477-482. |
38 | 张小锋, 姚强, 宋蔷, 等 . 燃烧中吸附剂捕集铅的实验研究[J]. 中国电机工程学报, 2008, 28(2): 61-65. |
ZHANG Xiaofeng , YAO Qiang , SONG Qiang , et al . Experimental study on lead capture by sorbents during combustion[J]. Proceedings of the Chinese Society of Electrical Engineering, 2008, 28(2): 61-65. | |
39 | HUANG Y , WANG X , LIU C , et al . Kaolin induced control of particulate lead and cadmium emissions during fluidized bed waste incineration[J]. Asia-Pacific Journal of Chemical Engineering, 2017, 12(2): 321-331. |
40 | WANG X Y , HUANG Y J , ZHONG Z P , et al . Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes[J]. Fuel Processing Technology, 2014, 119:228-235. |
41 | CHEN J C , WEY M Y, LIN Y C . The adsorption of heavy metals by different sorbents under various incineration conditions[J]. Chemosphere, 1998, 37(13): 2617-2625. |
42 | DAVIDSSON K O , STEENARI B M , ESKILSSON D . Kaolin addition during biomass combustion in a 35 MW circulating fluidized bed boiler[J]. Energy Fuel, 2007, 21(4): 1959-1966. |
43 | 李园, 陈娟, 张平安, 等 . 高岭土同时吸附Na, Pb化合物的机理研究[J]. 工程热物理学报, 2013, 34(1): 168-172. |
LI Yuan , CHEN Juan , ZHANG Ping’an , et al . Simultaneous adsorption of Na and Pb compounds by kaolinite[J]. Journal of Engineering Thermophysics, 2013, 34(1): 168-172. | |
44 | 祁慧 . 准东煤中钠的赋存形态和释放规律研究[D]. 武汉: 华中科技大学, 2017. |
QI Hui . The existence form of sodium in Zhundong coal and the release regulars of sodium[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
45 | TRAN K Q , IISA K , HAGSTR M M , et al . On the application of surface ionization detector for the study of alkali capture by kaolin in a fixed bed reactor[J]. Fuel, 2004, 83(7): 807-812. |
46 | TRAN K Q , IISA K , STEENARI B M , et al . A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector[J]. Fuel, 2005, 84(2): 169-175. |
47 | SORIA J , GAUTHIER D , FLAMANT G , et al . Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD[J]. Waste Manag., 2015, 43:176-187. |
48 | SHEN F , LIU J , ZHANG Z , et al . On-line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environmental Science & Technology, 2015, 49(22): 13716-13723. |
49 | DAVIS S B , WENDT J O L . Quantitative analysis of high temperature toxic metal sorption rates using aerosol fractionation[J]. Aerosol. Sci. Tech., 2000, 33(6): 536-543. |
50 | GALE T K . Mechanisms governing multi-species metal capture by kaolin[D]. Arizona: The University of Arizona, 2001. |
51 | WANG G , JENSEN P A , WU H , et al . Potassium capture by kaolin, Part 2: K2CO3, KCl, and K2SO4 [J]. Energy Fuel, 2018, 32(3): 3566-3578. |
52 | WANG G , JENSEN P A , WU H , et al . Potassium capture by kaolin.Part 1: KOH[J]. Energy Fuel, 2018, 32(2): 1851-1862. |
53 | HU H , CHEN D , LIU H , et al . Adsorption and reaction mechanism of arsenic vapors over γ-Al2O3 in the simulated flue gas containing acid gases[J]. Chemosphere, 2017, 180: 186-191. |
54 | ZHANG Z , LIU J , YANG Y , et al . Theoretical investigation of sodium capture mechanism on kaolinite surfaces[J]. Fuel, 2018, 234: 318-325. |
55 | WANG X Y , HUANG Y J , ZHONG Z P , et al . Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel, 2016, 166:333-339. |
56 | WANG X , HUANG Y , PAN Z , et al . Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. Journal of hazardous materials, 2015, 295: 43-54. |
57 | 刘敬勇, 孙水裕, 陈涛, 等 . 污泥焚烧中Pb的形态转化及吸附脱除[J]. 中国环境科学, 2014, 34(2): 466-477. |
LIU Jingyong , SUN Shuiyu , CHEN Tao , et al . Migration behavior of Pb and its vaporization control during sewage sludge incineration process[J]. China Environmental Science, 2014, 34(2): 466-477. | |
58 | DIAZSOMOANO M , MARTINEZTARAZONA M . High-temperature removal of cadmium from a gasification flue gas using solid sorbents[J]. Fuel, 2005, 84(6): 717-721. |
59 | 陈勇, 张衍国, 李清海, 等 . 垃圾焚烧中吸附剂对镉进行脱除的热力学平衡研究[J]. 燃烧科学与技术, 2008, 14(3): 239-245. |
CHEN Yong , ZHANG Yanguo , LI Qinghai , et al . Equilibrium analysis of sorbents behavior on Cd adsorption under MSW incineration conditions[J]. Journal of Combustion Science and Technology, 2008, 14(3): 239-245. | |
60 | 郑安庆, 赵增立, 王小波, 等 . 吸附剂对垃圾焚烧中重金属分布规律影响的热力学模拟研究[J]. 可再生能源, 2013, 31(3): 101-106. |
ZHENG Anqing , ZHAO Zengli , WANG Xiaobo , et al . Effect of adsorbent on distribution of heavy metals in incineration of municipal solid waste : thermodynamic equilibrium analysis[J]. Renewable Energy Resources, 2013, 31(3): 101-106. | |
61 | 夏文青, 黄亚继, 王昕晔, 等 . 非碳基吸附剂高温捕集氯化铅蒸气[J]. 化工进展, 2017, 36(9): 3508-3513. |
62 | XIA Wenqing , HUANG Yaji , WANG Xinye , et al . Experimental study on high temperature adsorption of lead chloride by non-carbon adsorbents[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3508-3513. |
63 | UBEROI M , SHADMAN F . Sorbents for removal of lead compounds from hot flue-gases[J]. AIChE J., 1990, 36(2): 307-309. |
64 | UBEROL M , SHADMAN F . High-temperature removal of cadmium compounds using solid sorbents[J]. Environmental Science & Technology, 1991, 25(7): 1285-1289. |
65 | UBEROI M , PUNJAK W , SHADMAN F . The kinetics and mechanism of alkali removal from flue gases by solid sorbents[J]. Progress in Energy and Combustion Science, 1990, 16(4): 205-211. |
66 | GALE T K , WENDT J O L . Mechanisms and models describing sodium and lead scavenging by a kaolin aerosol at high temperatures[J]. Aerosol. Sci. Tech., 2003, 37(11): 865-876. |
67 | GULLETT B K , RAGHUNATHAN K . Reduction of coal-based metal emissions by furnace sorbent injection[J]. Energy Fuels, 1994, 8(5): 1068-1076. |
68 | HUANG Y , YANG Y , HU H , et al . A deep insight into arsenic adsorption over γ-Al2O3 in the presence of SO2/NO[J]. Proceedings of the Combustion Institute, 2019, 37(3): 2951-2957. |
69 | MAHULI S , AGNIHOTRI R , CHAUK S , et al . Mechanism of arsenic sorption by hydrated lime[J]. Environmental Science & Technology, 1997, 31(11): 3226-3231. |
70 | GALE T K , WENDT J O L . High-temperature interactions between multiple-metals and kaolin[J]. Combustion and Flame, 2002, 131(3): 299-307. |
71 | WANG X , CHEN M , LIU C , et al . Typical gaseous semi-volatile metals adsorption by meta-kaolinite: a DFT study[J]. International Journal of Environmental Research and Public Health, 2018, 15(10): 2154. |
72 | YAO H , NARUSE I . Control of trace metal emissions by sorbents during sewage sludge combustion[J]. Proceedings of the Combustion Institute, 2005, 30(2): 3009-3016. |
73 | 孙伟, 刘小伟, 徐义书, 等 . 两种改性高岭土减排超细颗粒物的对比分析[J]. 化工学报, 2016, 67(4): 1179-1185. |
SUN Wei , LIU Xiaowei , XU Yishu , et al . Contrastive analysis of reducing ultrafine particulate matters emission by two modified kaolin[J]. CIESC Journal, 2016, 67(4): 1179-1185. | |
74 | SI J , LIU X , XU M , et al . Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: importance of sodium and its occurrence in coal[J]. Applied Energy, 2014, 114:434-444. |
75 | ZHOU K , XU M , YU D , et al . Formation and control of fine potassium-enriched particulates during coal combustion[J]. Energy & Fuels, 2010, 24(12): 6266-6674. |
76 | XU Y , LIU X , WANG H , et al . Influences of in-furnace kaolin addition on the formation and emission characteristics of PM2.5 in a 1000MW coal-fired power station[J]. Environmental Science & Technology, 2018, 52(15): 8718-8724. |
77 | 王昕晔 . 垃圾焚烧过程中铅和镉的挥发特性及其排放控制研究[D]. 南京: 东南大学, 2016. |
WANG Xinye . Volatilization characteristics and emissions control of lead and cadmium during waste incineation[D]. Nanjing: Southeast University, 2016. | |
78 | 郑云锋, 李荻, 陈淑琨, 等 . 催化裂化催化剂专用高岭土改性研究进展[J]. 工业催化, 2012, 20(11): 1-5. |
ZHENG Yunfeng , LI Di , CHEN Shukun , et al . Progress in modification research on kaolin used for catalytic cracking catalysts[J]. Industrial Catalysis, 2012, 20(11): 1-5. | |
79 | 王栋, 唐玉龙, 刘涛, 等 . 改性高岭土性能的研究[J]. 工业催化, 2014, 22(2): 128-131. |
WANG Dong , TANG Yulong , LIU Tao , et al . Study of the performance of modified kaoline clay[J]. Industrial Catalysis, 2014, 22(2): 128-131. | |
80 | 张永利, 朱佳, 史册, 等 . 高岭土的改性及其对Cr(Ⅵ)的吸附特性[J]. 环境科学研究, 2013, 26(5): 561-568. |
ZHANG Yongli , ZHU Jia , SHI Ce , et al . Modification of kaolin and its adsorption properties on Cr (Ⅵ)[J]. Research of Environmental Sciences, 2013, 26(5): 561-568. | |
81 | 王虹, 林建伟, 詹艳慧, 等 . 锆改性高岭土原位改良技术控制重污染河道底泥磷释放效果[J]. 环境科学, 2015, 36(10): 3720-3729. |
WANG Hong , LIN Jianwei , ZHAN Yanhui , et al . Efficiency of sediment amendment with zirconium-modified kaolin clay to control phosphorus release from sediments in heavily polluted rivers[J]. Environmental Science, 2015, 36(10): 3720-3729. | |
82 | 朱志超, 朱小燕, 雷新荣 . 硅烷偶联剂改性高岭土对PVDF膜性能的影响研究[J]. 膜科学与技术, 2015, 35(6): 9-15. |
ZHU Zhichao , ZHU Xiaoyan , LEI Xinrong . Effect of silane coupling agent modified kaolinite addition on the performance of PVDF membrane[J]. Membrane Science and Technology, 2015, 35(6): 9-15. | |
83 | 范颖芳, 张世义 . 纳米高岭土颗粒改性水泥基复合材料的性能[J]. 土木建筑与环境工程, 2014, 36(1): 130-137. |
FAN Yingfang , ZHANG Shiyi . Mechanical and chloride diffusion behavior of kaolinite clay modified cement-based material[J]. Journal of Chongqing Jianzhu University, 2014, 36(1): 130-137. | |
84 | 曹青, 李奥 . 插层剂对高岭土插层改性的研究进展[J]. 中国陶瓷, 2016, 52(4): 6-11. |
85 | CAO Qing , LI Ao . Research progress on modification of kaolin intercalation[J]. China Ceramics, 2016, 52(4): 6-11. |
86 | 崔超, 邵珊 . 高岭石有机插层复合材料的研究及应用现状[J]. 佛山陶瓷, 2008 (5): 36-40. |
CUI Chao , SHAO Shan . Research and application status of kaolinite/organics intercalated composites[J]. Foshan Ceramics, 2008(5): 36-40. | |
87 | 唐武飞, 谷晓昱, 张胜, 等 . 磷酸二氢钾插层改性高岭土复合物的制备与表征[J]. 光谱学与光谱分析, 2015, 35(2): 462-465. |
TANG Wufei , GU Xiaoyu , ZHANG Sheng , et al . Preparation and characterization of kaolinite-potassium dihydrogen phosphate intercalation composite[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 462-465. | |
88 | CHENG H , LIU Q , YANG J , et al . Thermal behavior and decomposition of kaolinite–potassium acetate intercalation composite[J]. Thermochimica Acta, 2010, 503/504:16-20. |
89 | 宋海兵 . 煅烧高岭土的生产简述与全干法煅烧工艺制度[J]. 中国非金属矿工业导刊, 2004 (1): 19-23. |
SONG Haibing . Production of dry calcined kaolin and its technic condition[J]. China Non-metallic Mining Iindustry Herald, 2004(1): 19-23. | |
90 | 许霞, 郑水林 . 我国煤系煅烧高岭土研究现状[J]. 中国非金属矿工业导刊, 2000(5): 12-15. |
XU Xia, ZHENG Shuilin, Present study situation of calcination kaolin in coal-bearing formation in China[J]. China Non-metallic Mining Industry Herald, 2000(5): 12-15. | |
91 | 刘从华, 高雄厚, 张忠东, 等 . 改性高岭土性能研究Ⅰ. 酸性和催化活性[J]. 石油炼制与化工, 1999(4): 34-40. |
LIU Conghua , GAO Xionghou , ZHANG Zhongdong , et al . Study on properties of modified kaolin[J]. Petroleum Processing and Petrochemicals, 1999(4): 34-40. | |
92 | 欧延, 林敬东, 陈文瑞, 等 . 酸改性高岭土的结构与性能的研究[J]. 厦门大学学报(自然科学版), 2004(2): 272-274. |
Yan OU , LIN Jingdong , CHEN Wenrui , et al . A study on structure and characteristic of acid-modified kaolin[J]. Journal of Xiamen University(Natural Science) , 2004(2): 272-274. | |
93 | 赵晨, 马智, 齐小周, 等 . 酸和碱处理对内蒙古煤系高岭土结构和裂化性能的影响[J]. 工业催化, 2007(1): 14-18. |
ZHAO Chen , Zhi MA , QI Xiaozhou , et al . Effects of alkali and acid modification on catalytic cracking behaviors of Inner Mongolian coal-measure hard kaolin[J]. Industrial Catalysis, 2007(1): 14-18. | |
94 | 郑云锋, 李荻, 陈淑琨, 等 . 催化裂化催化剂专用高岭土改性研究进展[J]. 工业催化, 2012, 20(11): 1-5. |
ZHENG Yunfeng , LI Di , CHEN Shukun , et al . Progress in modification research on kaolin used for catalytic cracking catalysts[J]. Industrial Catalysis, 2012, 20(11): 1-5. | |
95 | 刘明慧, 魏振浩, 周茁, 等 . 碱处理对高岭土微球上原位合成ZSM-5分子筛的影响[J]. 无机盐工业, 2016, 48(7): 68-72. |
LIU Minghui , WEI Zhenhao , ZHOU Zhuo , et al . Effect of alkali treatment on in-situ synthesis of ZSM-5 zeolite on calcined kaolin microspheres[J]. Inorganic Chemicals Industry, 2016, 48(7): 68-72. | |
96 | JOZEFACIUK G , BOWANKO G . Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals[J]. Clays and Clay Minerals, 2002, 50(6): 771-783. |
97 | WANG H , FENG Q , LIU K . The dissolution behavior and mechanism of kaolinite in alkali-acid leaching process[J]. Applied Clay Science, 2016, 132/133: 273-280. |
[1] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[7] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[8] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[9] | LI Weihua, YU Qianwen, YIN Junquan, WU Yinkai, SUN Yingjie, WANG Yan, WANG Huawei, YANG Yufei, LONG Yuyang, HUANG Qifei, GE Yanchen, HE Yiyang, ZHAO Lingyan. Leaching behavior of heavy metals from broken ton bags filled with fly ash in acid rain environment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4917-4928. |
[10] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[11] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[12] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[13] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[14] | YU Jingwen, SONG Luna, LIU Yanchao, LYU Ruidong, WU Mengmeng, FENG Yu, LI Zhong, MI Jie. An indole-bearing hypercrosslinked polymer In-HCP for iodine adsorption from water [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3674-3683. |
[15] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |