Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (09): 3599-3608.DOI: 10.16085/j.issn.1000-6613.2018-0433
Previous Articles Next Articles
GU Hannian1, GUO Tengfei1,2, MA Shicheng3, DAI Yang1,2, WANG Ning1
Received:
2018-03-05
Revised:
2018-04-26
Online:
2018-09-05
Published:
2018-09-05
顾汉念1, 郭腾飞1,2, 马时成3, 代杨1,2, 王宁1
通讯作者:
王宁,研究员,博士生导师,研究方向为环境矿物学。
作者简介:
顾汉念(1985-),男,博士,副研究员。E-mail:guhannian@vip.gyig.ac.cn。
基金资助:
CLC Number:
GU Hannian, GUO Tengfei, MA Shicheng, DAI Yang, WANG Ning. Review on separation, recovery, extraction and comprehensive utilization of iron from red mud[J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3599-3608.
顾汉念, 郭腾飞, 马时成, 代杨, 王宁. 赤泥中铁的提取与回收利用研究进展[J]. 化工进展, 2018, 37(09): 3599-3608.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0433
[1] DENG B, LI G, LUO J, et al. Enrichment of Sc2O3 and TiO2 from bauxite ore residues[J]. Journal of Hazardous Materials, 2017, 331:71-80. [2] LIU W, CHEN X, LI W, et al. Environmental assessment, management and utilization of red mud in China[J]. Journal of Cleaner Production, 2014, 84:606-610. [3] GU H, WANG N, LIU S. Radiological restrictions of using red mud as building material additive[J]. Waste Management & Research, 2012, 30(9):961-965. [4] GELENCSER A, KOVATS N, TURÓCZI B, et al. The red mud accident in Ajka (Hungary):characterization and potential health effects of fugitive dust[J]. Environmental Science & Technology, 2011, 45:1608-1615. [5] BORRA C R, BLANPAIN B, PONTIKES Y, et al. Recovery of rare earths and other valuable metals from bauxite residue (red mud):a review[J]. Journal of Sustainable Metallurgy, 2016, 2:365-386. [6] DEADY EA, MOUCHOS E, GOODENOUGH K, et al. A review of the potential for rare-earth element resources from European red muds:examples from Seydisehir, Turkey and Parnassus-Giona, Greece[J]. Minerals Engineering, 2016, 80(1):43-61. [7] KLAUBER C, GRÄFE M, POWER G. Bauxite residue issues Ⅱ. Options for residue utilization[J]. Hydrometallurgy, 2011, 108:11-32. [8] LIU Y, LIN C, WU Y. Characterization of red mud derived from a combined Bayer process and bauxite calcination method[J]. Journal of Hazardous Materials, 2007, 146:255-261. [9] GRÄFE M, POWER G, KLAUBER C. Bauxite residue issues:Ⅲ. Alkalinity and associated chemistry[J]. Hydrometallurgy, 2011, 108:60-79. [10] HUANG W, WANG S, ZHU Z, et al. Phosphate removal from wastewater using red mud[J]. Journal of Hazardous Materials, 2008, 158:35-42. [11] MERCURY J M R, CABRAL A A, PAIVA A E M, et al. Thermal behavior and evolution of the mineral phases of Brazilian red mud[J]. Journal of Thermal Analysis and Calorimetry, 2011, 104:635-643. [12] CABLIK V. Characterization and applications of red mud from bauxite processing[J]. Gospodarka Surowcami Mineralnymi, 2007, 23:27-38. [13] TEREKHOVA M V, GORICHEV I G, LAINER Y A, et al. Adsorption of dichromate ions on the red mud surface[J]. Russian Metallurgy (Metally), 2014(7):512-515. [14] PARK H S, PARK J H. Vitrification of red mud with mine wastes through melting and granulation process——preparation of glass ball[J]. Journal of Non-Crystalline Solids, 2017, 475:129-135. [15] AKINCI A, ARTIR R. Characterization of trace elements and radionuclides and their risk assessment in red mud[J]. Materials Characterization, 2008, 59:417-421. [16] PASCUAL J, CORPAS F, LÓPEZ-BECEIRO J, et al. Thermal characterization of a Spanish red mud[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(2):407-412. [17] SAMOUHOS M, TAXIARCHOU M, PILATOS G, et al. Controlled reduction of red mud by H2 followed by magnetic separation[J]. Minerals Engineering, 2017, 105:36-43. [18] UZINGER N, ANTON A D, ÖTVÖS K, et al. Results of the clean-up operation to reduce pollution on flooded agricultural fields after the red mud spill in Hungary[J]. Environmental Science and Pollution Research, 2015, 22:9849-9857. [19] ABBASI S M, RASHIDI A, GHORBANI A, et al. Synthesis, processing, characterization, and applications of red mud/carbon nanotube composites[J]. Ceramics International, 2016, 42:16738-16743. [20] SGLAVO V M, CAMPOSTRINI R, MAURINA S, et al. Bauxite ‘red mud’ in the ceramic industry. Part 1:thermal behaviour[J]. Journal of the European Ceramic Society, 2000, 20:235-244. [21] BALAKRISHNAN M, BATRA V S, HARGREAVES J S J, et al. Hydrogen production from methane in the presence of red mud-making mud magnetic[J]. Green Chemistry, 2009, 11:42-47. [22] PEI D, LI Y, CANG D. Na+ -solidification behavior of SiO2-Al2O3-CaO-MgO (10wt%) ceramics prepared from red mud[J]. Ceramics International, 2017, 43:16936-16942. [23] LIU S, GUAN X, ZHANG S, et al. Sintered Bayer red mud based ceramic bricks:microstructure evolution and alkalis immobilization mechanism[J]. Ceramics International, 2017, 43:13004-13008. [24] YE N, CHEN Y, YANG J, et al. Transformations of Na, Al, Si and Fe species in red mud during synthesis of one-part geopolymers[J]. Cement and Concrete Research, 2017, 101:123-130. [25] GUO Y, ZHAO Q, YAN K, et al. Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud[J]. Industrial & Engineering Chemistry Research, 2014, 53:4518-4521. [26] QIN S, WU B. Reducing the radiation dose of red mud to environmentally acceptable levels as an example of novel ceramic materials[J]. Green Chemistry, 2011, 13:2423-2427. [27] YE J, CONG X, ZHANG P, et al. Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12):3324-3331. [28] LIU S, GUAN X, ZHANG S, et al. Sintering red mud based imitative ceramic bricks with CO2 emissions below zero[J]. Materials Letters, 2017, 191:222-224. [29] 王克勤, 李爱秀, 邓海霞, 等. 山西氧化铝赤泥的物化性质[J]. 轻金属, 2012(4):25-28. WANG K Q, LI A X, DENG H X, et al. Physicochemical properties of red mud in Shanxi[J]. Light Metals, 2012(4):25-28. [30] ZHANG N, SUN H, LIU X, et al. Early-age characteristics of red mud-coal gangue cementitious material[J]. Journal of Hazardous Materials, 2009,167(1/2/3):927-932. [31] GU H, WANG N, YANG Y, et al. Features of distribution of uranium and thorium in red mud[J]. Physicochemical Problems of Mineral Processing, 2017, 53(1):110-120. [32] BOLANZ R M, KIEFER S, GÖTTLICHER J, et al. Hematite (α-Fe2O3)-A potential Ce4+ carrier in red mud[J]. Science of the Total Environment, 2018, 622/623:849-860. [33] 熊大和. SLon-2000立环脉动高梯度磁选机的研制[J]. 金属矿山, 1995(6):32-34. XIONG D H. The development of SLon-2000 vertical ring and pulsating high gradient magnetic separator[J]. Metal Mine, 1995(6):32-34. [34] 管建红. 采用脉动高梯度磁选机回收赤泥中铁的试验研究[J]. 江西有色金属, 2000, 14(4):15-18. GUAN J H. Study on recovering Fe from red mud with SLon vertical ring and pulsating high gradient magnetic separator[J]. Jiangxi Nonferrous Metals, 2000, 14(4):15-18. [35] 徐淑安, 邵延海, 熊述清, 等. 疏水团聚-磁选法回收赤泥中微细粒铁矿试验[J]. 矿产综合利用, 2015(6):62-66. XU S A, SHAO Y H, XIONG S Q, et al. Experimental study on magnetic separation of hematite and limonite fines using magnetic seeding with selective hydrophobic flocculation from red mud[J]. Multipurpose Utilization of Mineral Resources, 2015(6):62-66. [36] OHARA T, KUMAKURA H, WADA H. Magnetic separation using superconducting magnets[J]. Physica C, 2001, 357-360:1272-1280. [37] LI Y, WANG J, WANG X, et al. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation[J]. Physica C, 2011, 471(3/4):91-96. [38] 刘培坤, 姜兰越, 杨兴华, 等. 全重选法赤泥选铁富集性能试验研究[J]. 轻金属, 2017(6):22-27. LIU P K, JIANG L Y, YANG X H, et al. Separation performance study of recovering iron from red mud by gravity separation method[J]. Light Metals, 2017(6):22-27. [39] 顾汉念, 王宁, 刘世荣, 等. 烧结法赤泥的物质组成与颗粒特征研究[J]. 岩矿测试, 2012, 31(2):312-317. GU H N, WANG N, LIU S R, et al. Study on material composition and particles characteristics of red mud from the sintering alumina process[J]. Rock and Mineral Analysis, 2012, 31(2):312-317. [40] 葛琦, 王恒, 满毅, 等. 粒度对赤泥直接还原动力学的影响[J]. 化工进展, 2014, 33(12):3215-3220. GE Q, WANG H, MAN Y, et al. Effect of particle size on kinetics of direct reduction of red mud[J]. Chemical Industry and Engineering Progress, 2014, 33(12):3215-3220. [41] LIU W, YANG J, XIAO B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues[J]. Journal of Hazardous Materials, 2009, 161:474-478. [42] LI X, XIAO W, LIU W, et al. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering[J]. Transactions of Nonferrous Metals Society of China, 2009, 19:1342-1347. [43] LIU Y, ZUO K, YANG G, et al. Recovery of ferric oxide from Bayer red mud by reduction roasting-magnetic separation process[J]. Journal of Wuhan University of Technology (Mater. Sci. Ed), 2016, 31(2):404-407. [44] 贾岩, 倪文, 王中杰, 等. 拜耳法赤泥深度还原提铁实验[J].北京科技大学学报, 2011, 33(9):1059-1064. JIA Y, NI W, WANG Z J, et al. Deep reduction experiments of Bayer red mud for iron recovery[J]. Journal of University of Science and Technology Beijing, 2011, 33(9):1059-1064. [45] ZHU D, CHUN T, PAN J, et al. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt[J]. Journal of Iron & Steel Research International, 2012, 19(8):1-5. [46] 黄柱成, 蔡凌波, 张元波, 等. Na2CO3和CaF2强化赤泥铁氧化物还原研究[J]. 中南大学学报(自然科学版), 2010, 41(3):838-844. HUANG Z C, CAI L B, ZHANG Y B, et al. Reduction of iron oxides of red mud reinforced by Na2CO3 and CaF2[J]. Journal of Central South University (Science and Technology), 2010, 41(3):838-844. [47] LIU W, SUN S, ZHANG L, et al. Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na and Fe[J]. Minerals Engineering, 2012, 39:213-218. [48] LIU Z, LI H. Metallurgical process for valuable elements recovery from red mud:a review[J]. Hydrometallurgy, 2015,155:29-43. [49] SAMOUHOS M, TAXIARCHOU M, TSAKIRIDIS P E, et al. Greek "red mud" residue:a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process[J]. Journal of Hazardous Materials, 2013, 254/255:193-205. [50] JAYASANKAR K, RAY P K, CHAUBEY A K, et al. Production of pig iron from red mud waste fines using thermal plasma technology[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(8):679-684. [51] RATH S S, PANY A, JAYASANKAR K, et al. Statistical modeling studies of iron recovery from red mud using thermal plasma[J]. Plasma Science and Technology, 2013, 15(5):459-464. [52] RASPOPOV N A, KORNEEV V P, AVERIN V V, et al. Reduction of iron oxides during the pyrometallurgical processing of red mud[J]. Russian Metallurgy (Metally), 2013, 1:33-37. [53] BORRA C R, BLANPAIN B, PONTIKES Y, et al. Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery[J]. Journal of Sustainable Metallurgy, 2016, 2(1):28-37. [54] 王洪,王静松,刘江, 等. 基于直接还原熔分的高铁赤泥综合利用试验研究[J]. 轻金属, 2013(1):19-22. WANG H, WANG J S, LIU J, et al. Experimental research on comprehensive utilization of the high iron red mud based on direct reduction and melting by RHF iron bead technology[J]. Light Metals, 2013(1):19-22. [55] GUO Y, GAO J, XU H, et al. Nuggets production by direct reduction of high iron red mud[J]. Journal of Iron and Steel Research, International, 2013, 20:24-27. [56] LIU Y, NAIDU R. Hidden values in bauxite residue (red mud):Recovery of metals[J]. Waste Management, 2014, 34:266-2673. [57] 郝以党, 吴龙, 沈平, 等. 拜尔法赤泥精细还原实验研究[J]. 环境工程, 2015(1):105-108. HAO Y D, WU L, SHEN P, et al. Precise reduction experiment study of Bayer red mud[J]. Environmental Engineering, 2015(1):105-108. [58] MAN Y, FENG J. Effect of gas composition on reduction behavior in red mud and iron ore pellets[J]. Powder Technology, 2016, 301:674-678. [59] GOSTU S, MISHRA B, MARTINS G P. Low temperature reduction of hematite in red-mud to magnetite[M]//Light Metals. Berlin:Springer, 2017:67-73. [60] GU H, HARGREAVES J S J, MCFARLANE A R, et al. The carbon deposits formed by reaction of a series of red mud samples with methanol[J]. RSC Advances, 2016, 6(52):46421-46426. [61] 吴龙, 郝以党, 赵志国, 等. 超细粒度拜尔法赤泥氢还原动力学实验[J]. 工业加热, 2014, 43(6):32-35. WU L, HAO Y D, ZHAO Z G, et al. Reduction dynamic experiment study of ultrafine particles Bayer red mud by hydrogen[J]. Industrial Heating, 2014, 43(6):32-35. [62] TAO G C, LESTANDER T A, GELADI P, et al. Biomass properties in association with plant species and assortments Ⅰ:a synthesis based on literature data of energy properties[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3481-3506. [63] XIANG Q, LIANG X, SEHLESINGER M E, et al. Low-temperature reduction of ferric iron in red mud[M]//Light Metals. Switzerland:Springer Nature, 2001:157-162. [64] 李恒, 刘晓明, 赵喜彬, 等. 生物质松木锯末中低温还原高铁拜耳法赤泥[J]. 工程科学学报, 2017, 39(9):1331-1338. LI H, LIU X M, ZHAO X B, et al. Medium-low temperature reduction of high-iron Bayer process red mud using biomass pine sawdust[J]. Chinese Journal of Engineering, 2017, 39(9):1331-1338. [65] MAYORAL M C, IZQUIERDO M T, ANDRES J M, et al. Mechanism of interaction of pyrite with hematite as simulation of slagging and fireside tube wastage in coal combustion[J]. Thermochimica Acta, 2002, 390:103-111. [66] LIU Y, ZHAO B, TANG Y, et al. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite[J]. Thermochimica Acta, 2014, 588:11-15. [67] 谢武明,张宁,李俊, 等. 盐酸浸出提取赤泥中铝和铁的工艺条件优化[J]. 环境工程学报, 2017, 11(10):5677-5682. XIE W M, ZHANG N, LI J, et al. Optimization of condition for extraction of aluminum and iron from red mud by hydrochloric acid leaching[J]. Chinese Journal of Environmental Engineering, 2017, 11(10):5677-5682. [68] LIU Z, ZENG K, ZHAO W, et al. Effect of temperature on iron leaching from bauxite residue by sulfuric acid[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82:55-58. [69] UZUN D, GÜLFEN M. Dissolution kinetics of iron and aluminium from red mud in sulphuric acid solution[J]. Indian Journal of Chemical Technology, 2007, 14:263-268. [70] PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud:recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99:8-18. [71] AMBIKADEVI V R, LALITHAMBIKA M. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J]. Applied Clay Science, 2000, 16:133-145. [72] YU Z, SHI Z, CHEN Y, et al. Red-mud treatment using oxalic acid by UV irradiation assistance[J]. Transactions of Nonferrous Metals Society of China, 2012, 22:456-460. [73] GU H, HARGREAVES J S J, JIANG J Q, et al. Potential routes to obtain value-added iron-containing compounds from red mud[J]. Journal of Sustainable Metallurgy, 2017, 3(3):561-569. [74] YANG Y, WANG X, WANG M, et al. Recovery of iron from red mud by selective leach with oxalic acid[J]. Hydrometallurgy, 2015, 157:239-245. [75] YANG Y, WANG X, WANG M, et al. Iron recovery from the leached solution of red mud through the application of oxalic acid[J]. International Journal of Mineral Processing, 2016, 157:145-151. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[4] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[5] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[10] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[11] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[12] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[13] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[14] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[15] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |