[1] WALSH G. Biopharmaceutical benchmarks 2014[J]. Nature Biotechnology, 2014, 32(10):992-1000.
[2] WAEGEMAN H, SOETAERT W. Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(12):1891-1910.
[3] EISENSTEIN M. Living factories of the future[J]. Nature, 2016, 531(7594):401-403.
[4] GUPTA S K, SHUKLA P. Advanced technologies for improved expression of recombinant proteins in bacteria:perspectives and applications[J]. Critical Reviews in Biotechnology, 2016, 36(6):1089-1098.
[5] GREEN E R, MECSAS J. Bacterial secretion systems-an overview[J]. Microbiology Spectrum, 2016, 4(1):VMBF-0012-2015.
[6] RANDALL L, HARDY S. SecB, one small chaperone in the complex milieu of the cell[J]. Cellular and Molecular Life Sciences, 2002, 59(10):1617-1623.
[7] MOGENSEN J E, OTZEN D E. Interactions between folding factors and bacterial outer membrane proteins[J]. Molecular microbiology, 2005, 57(2):326-346.
[8] SIJBRANDI R, URBANUS M L, CORINNE M, et al. Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein[J]. Journal of Biological Chemistry, 2003, 278(7):4654-4659.
[9] NATALE P, BRÜSER T, DRIESSEN A J. Sec-and Tat-mediated protein secretion across the bacterial cytoplasmic membrane——distinct translocases and mechanisms[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778(9):1735-1756.
[10] PALMER T, BERKS B C. The twin-arginine translocation(Tat)protein export pathway[J]. Nature Reviews Microbiology, 2012, 10(7):483.
[11] CHEN J, ZHAO L, FU G, et al. A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis[J]. Microbial Cell Factories, 2016, 15(1):69.
[12] YANG C-K, ZHANG X-Z, LU C-D, et al. An internal hydrophobic helical domain of Bacillus subtilis enolase is essential but not sufficient as a non-cleavable signal for its secretion[J]. Biochemical and Biophysical Research Communications, 2014, 446(4):901-905.
[13] IDIRIS A, TOHDA H, KUMAGAI H, et al. Engineering of protein secretion in yeast:strategies and impact on protein production[J]. Applied Microbiology and Biotechnology, 2010, 86(2):403-417.
[14] RAPOPORT T A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes[J]. Nature, 2007, 450(7170):663.
[15] YOSHIDA H. ER stress and diseases[J]. The FEBS Journal, 2007, 274(3):630-658.
[16] SCHAL N M, WORKMAN M, NIELSEN J B. Monitoring and control of protein production in fungi[D]. Copenhagen:Danmarks Tekniske Universitet, 2015.
[17] SORENSEN H P, MORTENSEN K K. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli[J]. Microbial Cell Factories, 2005, 4(1):1.
[18] JIN D J, CAGLIERO C, ZHOU Y N. Growth rate regulation in Escherichia coli[J]. FEMS Microbiology Reviews, 2012, 36(2):269-287.
[19] BATTESTI A, MAJDALANI N, GOTTESMAN S. The RpoS-mediated general stress response in Escherichia coli[J]. Annual Review of Microbiology, 2011, 65:189-213.
[20] YANG H, LIU L, SHIN H D, et al. Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline α-amylase from alkaliphilic Alkalimonas amylolytica in Escherichia coli and Pichia pastoris[J]. Biotechnology Progress, 2013, 29(1):39-47.
[21] HE W, MU W, JIANG B, et al. Food-grade expression of d-psicose 3-epimerase with tandem repeat genes in Bacillus subtilis[J]. Journal of Agricultural and Food Chemistry, 2016, 64(28):5701-5707.
[22] HUANG K, ZHANG T, JIANG B, et al. Overproduction of Rummeliibacillus pycnus arginase with multi-copy insertion of the argR. pyc cassette into the Bacillus subtilis chromosome[J]. Applied Microbiology and Biotechnology, 2017, 101(15):6039-6048.
[23] SONG Y, FU G, DONG H, et al. High-efficiency secretion of β-mannanase in Bacillus subtilis through protein synthesis and secretion optimization[J]. Journal of Agricultural and Food Chemistry, 2017, 65(12):2540-2548.
[24] GUAN C, CUI W, CHENG J, et al. Construction of a highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptide in Bacillus subtilis[J]. New Biotechnology, 2016, 33(3):372-379.
[25] GUAN C, CUI W, CHENG J, et al. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis[J]. Microbial Cell Factories, 2015, 14(1):150.
[26] JIN F J, WATANABE T, JUVVADI P R, et al. Double disruption of the proteinase genes, tppA and pepE, increases the production level of human lysozyme by Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2007, 76(5):1059.
[27] YOON J, KIMURA S, MARUYAMA J-I, et al. Construction of quintuple protease gene disruptant for heterologous protein production in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2009, 82(4):691.
[28] FENG Y, LIU S, JIAO Y, et al. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy[J]. Applied Microbiology and Biotechnology, 2017, 101(4):1509-1520.
[29] CHEN J, CHEN X, DAI J, et al. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800[J]. International Journal of Biological Macromolecules, 2015, 80:200-207.
[30] WATANABE K, TSUCHIDA Y, OKIBE N, et al. Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences[J]. Microbiology, 2009, 155(3):741-750.
[31] ISMAIL N F, HAMDAN S, MAHADI N M, et al. A mutant L-asparaginase Ⅱ signal peptide improves the secretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli[J]. Biotechnology Letters, 2011, 33(5):999-1005.
[32] PEI X, WANG Q, MENG L, et al. Chaperones-assisted soluble expression and maturation of recombinant Co-type nitrile hydratase in Escherichia coli to avoid the need for a low induction temperature[J]. Journal of Biotechnology, 2015, 203:9-16.
[33] SUZUKI T, BABA S, ONO M, et al. Efficient antibody production in the methylotrophic yeast Ogataea minuta by overexpression of chaperones[J]. Journal of Bioscience and Bioengineering, 2017, 124(2):156-163.
[34] DE KEERSMAEKER S, VRANCKEN K, VAN MELLAERT L, et al. Evaluation of TatABC overproduction on Tat-and Sec-dependent protein secretion in Streptomyces lividans[J]. Archives of Microbiology, 2006, 186(6):507-512.
[35] 白雷雷, 马然静, 杨绍梅, 等. 过表达TatAdCd转位酶对枯草芽孢杆菌脂肪酶分泌的影响[J]. 微生物学通报, 2016, 43(1):2-8. BAI L L, MA R J, YANG S M, et al. Effect of TatAdCd translocases overexpression on the secretion of lipase in Bacillus subtilis[J]. Microbiology China, 2016, 43(1):2-8.
[36] PAYNE T, FINNIS C, EVANS L, et al. Modulation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant human albumin production results in increased production of multiple heterologous proteins[J]. Applied and Environmental Microbiology, 2008, 74(24):7759-7766.
[37] VALKONEN M, WARD M, WANG H, et al. Improvement of foreign-protein production in Aspergillus niger var. awamori by constitutive induction of the unfolded-protein response[J]. Applied and Environmental Microbiology, 2003, 69(12):6979-6986.
[38] VOIGT B, SCHROETER R, SCHWEDER T, et al. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis[J]. Journal of Biotechnology, 2014, 191:139-149.
[39] LULE I, MALDONADO B, D'HUYS P-J, et al. On the influence of overexpression of phosphoenolpyruvate carboxykinase in Streptomyces lividans on growth and production of human tumour necrosis factor-alpha[J]. Applied Microbiology and Biotechnology, 2012, 96(2):367-372.
[40] D'HUYS P-J, LULE I, VAN HOVE S, et al. Amino acid uptake profiling of wild type and recombinant Streptomyces lividans TK24 batch fermentations[J]. Journal of Biotechnology, 2011, 152(4):132-143.
[41] D'HUYS P-J, LULE I, VERCAMMEN D, et al. Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium[J]. Journal of Biotechnology, 2012, 161(1):1-13.
[42] LIEDER S, NIKEL P I, DE LORENZO V, et al. Genome reduction boosts heterologous gene expression in Pseudomonas putida[J]. Microbial Cell Factories, 2015, 14(1):23.
[43] MOUSSA M, IBRAHIM M, EL GHAZALY M, et al. Expression of recombinant staphylokinase in the methylotrophic yeast Hansenula polymorpha[J]. BMC Biotechnology, 2012, 12(1):96.
[44] RICHTER H, MARTIN M E, ANGENENT L T. A two-stage continuous fermentation system for conversion of syngas into ethanol[J]. Energies, 2013, 6(8):3987-4000.
[45] ROHE P, VENKANNA D, KLEINE B, et al. An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform[J]. Microbial Cell Factories, 2012, 11(1):144.
[46] HEMMERICH J, ADELANTADO N, BARRIG N J M, et al. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system:application on Pichia pastoris producing Rhizopus oryzae lipase[J]. Microbial Cell Factories, 2014, 13(1):36. |