Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (08): 3119-3128.DOI: 10.16085/j.issn.1000-6613.2017-1977
Previous Articles Next Articles
TANG Ruiqi1, XIONG Liang2, CHENG Cheng2, ZHAO Xinqing1, BAI Fengwu1
Received:
2017-09-20
Revised:
2017-11-27
Online:
2018-08-05
Published:
2018-08-05
唐瑞琪1, 熊亮2, 程诚2, 赵心清1, 白凤武1
通讯作者:
赵心清,教授,从事酿酒酵母及其他工业微生物代谢工程改造和生物能源生产。
作者简介:
唐瑞琪(1993-),女,博士研究生,从事酿酒酵母代谢工程改造工作。E-mail:rq_tang@sjtu.edu.cn。
基金资助:
CLC Number:
TANG Ruiqi, XIONG Liang, CHENG Cheng, ZHAO Xinqing, BAI Fengwu. Progress of research on construction and optimization of recombinant Saccharomyces cerevisiae strains for cellulosic ethanol production[J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3119-3128.
唐瑞琪, 熊亮, 程诚, 赵心清, 白凤武. 纤维素乙醇生产重组酿酒酵母菌株的构建与优化研究进展[J]. 化工进展, 2018, 37(08): 3119-3128.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1977
[1] KIM S R, HA S J, WEI N, et al. Simultaneous co-fermentation of mixed sugars:a promising strategy for producing cellulosic ethanol[J]. Trends in Biotechnology, 2012, 30(5):274-282. [2] 张强, 郭元, 韩德明. 酿酒酵母乙醇耐受性的研究进展[J]. 化工进展, 2014, 33(1):187-192. ZHANG Q, GUO Y, HAN D M. Research progress in the ethanol tolerance of yeast[J]. Chemical Industry and Engineering Progress, 2014, 33(1):187-192. [3] 张艳, 卢文玉. 酿酒酵母细胞表达异源萜类化合物的研究进展[J]. 化工进展, 2014, 33(5):1265-1270. ZHANG Y, LU W Y. Progress of heterologous expression of terpenes in Saccharomyces cerevisiae[J]. Chemical Industry and Engineering Progress, 2014, 33(5):1265-1270. [4] KIM S R, PARK Y C, JIN Y S, et al. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism[J]. Biotechnology Advances, 2013, 31(6):851-861. [5] JO J H, PARK Y C, JIN Y S, et al. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis[J]. Bioresource Technology, 2017, 241:7. [6] ZHANG X Y, WANG J Y, ZHANG W W, et al. Optimizing the coordinated transcription of central xylose-metabolism genes in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 2018, 102:1-11. [7] KIM S R, HA S J, KONG I I, et al. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(4):336-343. [8] CADETE R M, DE LAS HERAS A M, SANDSTROM A G, et al. Exploring xylose metabolism in Spathaspora species:Xyl 1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2016, 9:1. [9] WEI N, QUARTERMAN J, KIM S R, et al. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast[J]. Nature Communications, 2013, 4:2580. [10] ZHANG G C, KONG I I, WEI N, et al. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast[J]. Biotechnology and Bioengineering, 2016, 113(12):2587-2596. [11] VAN MARIS A J, WINKLER A A, KUYPER M, et al. Development of efficient xylose fermentation in Saccharomyces cerevisiae:xylose isomerase as a key component[M]. Berlin, Heidelberg:Springer, 2007:179-204. [12] KUYPER M, HARHANGI H R, STAVE A K, et al. High-level functional expression of a fungal xylose isomerase:the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?[J]. FEMS Yeast Research, 2003, 4(1):69-78. [13] KUYPER M, AARON A, VAN DIJKEN J P, et al. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation:a proof of principle[J]. FEMS Yeast Research, 2004, 4(6):655-664. [14] KUYPER M, HARTOG M M, TOIRKENS M J, et al. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation[J]. FEMS Yeast Research, 2005, 5(4-5):399-409. [15] KUYPER M, TOIRKENS M J, DIDERICH J A, et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain[J]. FEMS Yeast Research, 2005, 5(10):925-934. [16] ZHOU H, CHENG J S, WANG B L, et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(6):611-622. [17] DOS SANTOS L V, CARAZZOLLE M F, NAGAMATSU S T, et al. Unraveling the genetic basis of xylose consumption in engineered Saccharomyces cerevisiae strains[J]. Scientific Reports, 2016, 6:38676. [18] DEMEKE M M, FOULQUIE-MORENO M R, DUMORTIER F, et al. Rapid evolution of recombinant Saccharomyces cerevisiae for xylose fermentation through formation of extra-chromosomal circular DNA[J]. PLoS Genetics, 2015, 11(3):e1005010. [19] HOU J, SHEN Y, JIAO C L, et al. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2016, 121(2):160-165. [20] KO J K, UM Y, LEE S M. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress[J]. Bioresource Technology, 2016, 222:422-430. [21] VERHOEVEN M D, LEE M, KAMOEN L, et al. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis[J]. Scientific Reports, 2017, 7:46155. [22] HOU J, JIAO C L, PENG B Y, et al. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2016, 38:241-250. [23] THOMIK T, WITTIG I, CHOE J Y. An artificial transport metabolon facilitates improved substrate utilization in yeast[J]. Nature Chemical Biology, 2017, 13(11):1158-1163. [24] BRAT D, BOLES E, WIEDEMANN B. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2009, 75(8):2304-2311. [25] MADHAVAN A, TAMALAMPUDI S, USHIDA K, et al. Xylose isomerase from polycentric fungus Orpinomyces:gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol[J]. Applied Microbiology and Biotechnology, 2009, 82(6):1067-1078. [26] MERT M J, ROSE S H, LA GRANGE D C, et al. Quantitative metabolomics of a xylose-utilizing Saccharomyces cerevisiae strain expressing the Bacteroides thetaiotaomicron xylose isomerase on glucose and xylose[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(10):1459-1470. [27] AELING K A, SALMON K A, LAPLAZA J M, et al. Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(11):1597-1604. [28] HECTOR R E, DIEN B S, COTTA M A, et al. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24[J]. Biotechnology for Biofuels, 2013, 6:84. [29] PENG B Y, HUANG S C, LIU T T, et al. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation[J]. Microbial Cell Factories, 2015, 14:70. [30] KATAHIRA S, MURAMOTO N, MORIYA S, et al. Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2017, 10:203. [31] SARTHY A, MCCONAUGHY B, LOBO Z, et al. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 1987, 53(9):1996-2000. [32] XIA P F, ZHANG G C, LIU J J, et al. GroE chaperonins assisted functional expression of bacterial enzymes in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2016, 113(10):2149-2155. [33] LI H X, SHEN Y, WU M L, et al. Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production[J]. Bioresour Bioprocess, 2016, 3(1):51. [34] KO J K, UM Y, WOO H M, et al. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway[J]. Bioresource Technology, 2016, 209:290-296. [35] LEE S M, JELLISON T, ALPER H S. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields[J]. Biotechnology and Biofuels, 2014, 7:122. [36] 左颀, 张明明, 程诚, 等. 不同宿主来源的重组酿酒酵母混合糖代谢比较[J]. 微生物学通报, 2014, 41(7):1270-1277. ZUO Q, ZHANG M M, CHENG C, et al. Comparison of glucose/xylose cofermentation in recombinant Saccharomyces cerevisiae strains using different hosts[J]. Microbiology China, 2014, 41(7):1270-1277. [37] 程诚, 熊亮, 李勇昊, 等. 混合糖发酵重组酿酒酵母的菌株构建和菊芋秸秆同步糖化发酵研究[J]. 微生物学通报, 2016, 43(7):1411-1418. CHENG C, XIONG L, LI Y H, et al. Construction of mixed-sugar fermenting recombinant Saccharomyces cerevisiae and ethanol production from Jerusalem artichoke stalk by simultaneous saccharification and fermentation[J]. Microbiology China, 2016, 43(7):1411-1418. [38] LI Y C, LI G Y, GOU M, et al. Functional expression of xylose isomerase in flocculating industrial Saccharomyces cerevisiae strain for bioethanol production[J]. Journal of Bioscience and Bioengineering, 2016, 121(6):7. [39] QI X, ZHA J, LIU G G, et al. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2015, 6:1165. [40] LI Y C, ZENG W Y, GUO M, et al. Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes[J]. Applied Microbiology and Biotechnology, 2017, 101(20):7741-7753. [41] DU J, LI S J, ZHAO H M. Discovery and characterization of novel D-xylose-specific transporters from Neurospora crassa and Pichia stipitis[J]. Molecular Biosystems, 2010, 6(11):2150-2156. [42] MOYSES D N, REIS V C, DE ALMEIDA J R, et al. Xylose fermentation by Saccharomyces cerevisiae:challenges and prospects[J]. International Journal of Molecular Sciences, 2016, 17(3):207. [43] FARWICK A, BRUDER S, SCHADEWEG V, et al. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14):5159-5164. [44] REIDER APEL A, OUELLET M, SZMIDT-MIDDLETON H, et al. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae[J]. Scientific Reports, 2016, 6:19512. [45] WANG M, LI S J, ZHAO H M. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2016, 113(1):206-215. [46] WANG M, YU C Z, ZHAO H. Identification of an important motif that controls the activity and specificity of sugar transporters[J]. Biotechnology and Bioengineering, 2016, 113(7):1460-1467. [47] NIJLAND J G, VOS E, SHIN H Y, et al. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2016, 9:158. [48] HECTOR R E, QURESHI N, HUGHES S R, et al. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption[J]. Applied Microbiology and Biotechnology, 2008, 80(4):675-684. [49] SLOOTHAAK J, TAMAYO-RAMOS J A, ODONI D I, et al. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei[J]. Biotechnology for Biofuels, 2016, 9:148. [50] WANG M, YU C Z, ZHAO H M. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization[J]. Biotechnology and Bioengineering, 2016, 113(3):484-491. [51] YOUNG E M, TONG A, BUI H, et al. Rewiring yeast sugar transporter preference through modifying a conserved protein motif[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(1):131-136. [52] LI H, SCHMITZ O, ALPER H S. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter[J]. Applied Microbiology and Biotechnology, 2016, 100(23):10215-10223. [53] YOUNG E M, COMER A D, HUANG H, et al. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2012, 14(4):401-411. [54] ZHAO X Q, ZI L H, BAI F W, et al. Bioethanol from lignocellulosic biomass[M]. Berlin, Heidelberg:Springer, 2012:25-51. [55] ZHU J Q, QIN L, LI B Z, et al. Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005[J]. Bioresource Technology, 2014, 169:9-18. [56] MAHBOUBI A, YLITERVO P, DOYEN W, et al. Continuous bioethanol fermentation from wheat straw hydrolysate with high suspended solid content using an immersed flat sheet membrane bioreactor[J]. Bioresource Technology, 2017, 241:296-308. [57] QIN L, LI X, LIU L, et al. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production[J]. Bioresource Technology, 2017, 224:342-348. [58] 李洪兴, 张笑然, 沈煜, 等. 纤维素乙醇生物加工过程中的抑制物对酿酒酵母的影响及应对措施[J]. 生物工程学报, 2009, 25(9):1321-1328. LI H X, ZHANG X R, SHEN Y, et al. Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose:a review[J]. Chinese Journal of Biotechnology, 2009, 25(9):1321-1328. [59] 刘贺, 朱家庆, 纵秋瑾, 等. 生物质转化工程酿酒酵母的研究进展[J]. 生物技术通报, 2017, 33(1):93-98. LIU H, ZHU J Q, ZONG Q J, et al. The development of engineered Saccharomyces cerevisiae for biomass conversion[J]. Biotechnology Bulletin, 2017, 33(1):93-98. [60] ZHANG M M, ZHAO X Q, CHENG C, et al. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1[J]. Biotechnology Journal, 2015, 10(12):1903-1911. [61] ZHANG M M, ZHANG K Y, MEHMOOD M A, et al. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid[J]. Bioresource Technology, 2017, 245:1461-1468. [62] DEMEKE M M, DIETZ H, LI Y, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering[J]. Biotechnology for Biofuels, 2013, 6(1):89. [63] ZHU J Q, QIN L, LI W C, et al. Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading:overcoming the inhibitors by non-tolerant yeast[J]. Bioresource Technology, 2015, 198:39-46. [64] PARREIRAS L S, BREUER R J, NARASIMHAN R A, et al. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover[J]. PLoS One, 2014, 9(9):e107499. [65] WANG R F, UNREAN P, FRANZEN C J. Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production[J]. Biotechnology for Biofuels, 2016, 9(88):13. [66] LIU Z H, CHEN H Z. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading[J]. Bioresource Technology, 2016, 201:15-26. [67] LEE Y G, JIN Y S, CHA Y L, et al. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae[J]. Bioresource Technology, 2017, 228:355-361. [68] JIN M J, LIU Y P, DA COSTA SOUSA L, et al. Development of rapid bioconversion with integrated recycle technology for ethanol production from extractive ammonia pretreated corn stover[J]. Biotechnology and Bioengineering, 2017, 114(8):1713-1720. [69] LIU G, ZHANG Q, LI H X, et al. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production[J]. Biotechnology and Bioengineering, 2018, 115(1):60-69. [70] 吕永坤, 堵国成, 陈坚, 等. 合成生物学技术研究进展[J]. 生物技术通报, 2015, 31(4):134-148. LÜ Y K, DU G C, CHEN J, et al. Advances in synthetic biology[J]. Biotechnology Bulletin, 2015, 31(4):134-148. |
[1] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[2] | CHEN Hao, ZHANG Chuanhao, YU Feng, FAN Binbin, LI Ruifeng. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802. |
[3] | XUE Machen, YANG Bolun, XIA Chungu, ZHU Gangli. Progress in heterogeneous catalyst for ethanol upgrading to higher (C6+) alcohols [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 194-203. |
[4] | TAO Yuxuan, GUO Liang, GAO Cong, SONG Wei, CHEN Xiulai. Progress in metabolic engineering of microorganisms for CO2 fixation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 40-52. |
[5] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[6] | PU Fulong, WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan. Effect of lignin extracted by lactic acid-based deep eutectic solvent from rice straw on cellulase hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4937-4945. |
[7] | PENG Yuanting, WANG Ao, WEI Tong, LI Nanqi, LI Jian. Reforming of liquid bio-fuels for solid oxide fuel cell application [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2972-2979. |
[8] | GUO Dongwen, ZHAO Wenguang, LIU Xianxiang, YIN Dulin. Advances in catalytic conversion of biomass carbohydrates into biofuel 2,5-dimethylfuran [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2092-2108. |
[9] | LI Ling, YU Yong, HU Yonghong. Research progress in production of lipstatinfermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2251-2257. |
[10] | GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261. |
[11] | ZHOU Zikang, XU Ping. Application and progress of global transcription regulation in microbial cell factory construction [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1248-1251. |
[12] | ZHANG Cunsheng, LIU Yan, YANG Li, TIAN Yufei. Research progress of hexanol production through anaerobic fermentation of wasted industrial syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1604-1610. |
[13] | Tong WANG, Hualiang AN, Fang LI, Wei XUE, Yanji WANG. Research progress of the heterogeneous catalysts for 2,5-dimethylfuran synthesis via hydrogenolysis of 5-hydroxymethylfufural [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 824-834. |
[14] | GAO Cong, GUO Liang, HU Guipeng, CHEN Xiulai, LIU Liming. Advances of metabolic flux regulation in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6807-6817. |
[15] | Hongshen LI, Shizhong LI. Advances in research and application of vapor permeation for biofuel ethanol production [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1620-1631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |