Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (07): 2672-2685.DOI: 10.16085/j.issn.1000-6613.2017-1350
Previous Articles Next Articles
WEI Hui1,2, TANG Yang1, YOU Hui2
Received:
2017-07-03
Revised:
2017-08-01
Online:
2018-07-05
Published:
2018-07-05
韦慧1,2, 汤洋1, 尤晖2
通讯作者:
汤洋,工程师,研究方向为太阳能电池。
作者简介:
韦慧(1987-),女,博士研究生。
基金资助:
CLC Number:
WEI Hui, TANG Yang, YOU Hui. Progress of the solution method in organic-inorganic hybrid perovskite fabrication[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2672-2685.
韦慧, 汤洋, 尤晖. 溶液法制备有机-无机杂化钙钛矿薄膜的研究进展[J]. 化工进展, 2018, 37(07): 2672-2685.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1350
[1] National Renewable Energy Laboratory. Research cell record efficiency chart and explanatory notes[EB/OL].[2017-04-17]. https://www.nrel.gov/pv/assets/images/efficiency-chart.png. [2] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21):477-485. [3] SAPAROV B, MITZI D B. Organic-inorganic perovskites:structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7):4558-4596. [4] GREEN M A, BAILIE-HO A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8:506-514. [5] 肖立新,邹德春,王树峰,等. 钙钛矿太阳能电池[M]. 北京:北京大学出版社, 2016:22-48. XIAO L X, ZOU D C, WANG S F, et al. Perovskite solar cells[M]. Beijing:Peking University Press, 2016:22-48. [6] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240):1234-1237. [7] LEE J W, SEOL D J, CHO A N, et al. High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3[J]. Advanced Materials, 2014, 26(29):4991-4998. [8] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide:a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7:982-988. [9] SWARNKAR A,MARSHALL A R,SANEHIRA E M,et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308):92-95. [10] YI C Y, LUO J S, MELONI S, et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(2):656-662. [11] JACOBSSON T J, CORREA-BAENA J P, PAZOKI M, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells[J]. Energy & Environmental Science, 2016, 9(5):1706-1724. [12] SALIBA M, MATSUI T, SEO J Y, et al. Cesium-containing triple cation perovskite solar cells:Improved stability, reproducibility and high efficiency[J]. Energy & Environmental Science, 2016, 9(6):1989-1997. [13] BI D Q, YI C Y, LUO J S, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1:16142. [14] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance[J]. Science, 2016, 354(6309):206-209. [15] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051. [16] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(8):591. [17] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107):643-647. [18] LIU M Z, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467):395-398. [19] ZHOU H P, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546. [20] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535):476-480. [21] BI D Q, MOON S J, HAGGMAN L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures[J]. RSC Advances, 2013, 3(41):18762-18766. [22] QIN P, TANAKA S, ITO S, et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency[J]. Nature Communications, 2014, 5:3834. [23] LIU J, WU Y, QIN C, et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(9):2963-2967. [24] GHARIBZADEH S, NEJAND B A, MOSHAⅡ A, et al. Two-step physical deposition of a compact CuI hole-transport layer and the formation of an interfacial species in perovskite solar cells[J]. Chem SusChem, 2016, 9(15):1929-1937. [25] ZHANG H, WANG H, CHEN W, et al. CuGaO2:A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells[J]. Advanced Materials, 2017, 29(18):1604984. [26] ZHAO J J, ZHENG X P, DENG Y H, et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?[J]. Energy & Environmental Science, 2016, 9(12):3650-3656. [27] WAKAMIYA A, ENDO M, SASAMORI T, et al. Reproducible fabrication of efficient perovskite-based solar cells:X-ray crystallographic studies on the formation of CH3NH3PbI3 layers[J]. Chemistry Letters, 2014, 43(5):711-714. [28] RONG Y G, TANG Z J, ZHAO Y F, et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells[J]. Nanoscale, 2015, 7(24):10595-10599. [29] KIM H B, CHOI H, JEONG J, et al. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells[J]. Nanoscale, 2014, 6(12):6679-6683. [30] WU Y Z, YANG X D, CHEN W, et al. Perovskite solar cells with 18.21% effciency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy, 2016, 7:16148. [31] SHEN D H, YU X, CAI X, et al. Understanding the solvent-assisted crystallization mechanism in herent in efficient organic-inorganic halide perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2(48):20454-20461. [32] CHEN J Z, XIONG Y L, RONG Y G, et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells[J]. Nano Energy, 2016, 27:130-137. [33] TSAI C M, WU G W, NARRA S, et al. Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%[J]. Journal of Materials Chemistry A, 2017, 5(2):739-747. [34] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead (Ⅱ) iodide[J]. Journal of the American Chemical Society, 2015, 137(27):8696-8699. [35] WILLIAMS S T, ZUO F, CHUEH C C, et al. Role of chloride in the morphological evolution of organo-lead halide perovskite thin films[J]. ACS Nano, 2014, 8(10):10640-10654. [36] WANG D, LIU Z H, ZHOU Z M, et al. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixed-lead-halide precursors[J]. Chemistry of Materials, 2014, 26(24):7145-7150. [37] ZHANG W, SALIBA M, MOORE D T, et al. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells[J]. Nature Communications, 2015, 6:6142. [38] SINGH T, MIYASAKA T. High performance perovskite solar cell via multi-cycle low temperature processing of lead acetate precursor solutions[J]. Chemical Communications, 2016, 52(26):4784-4787. [39] HUANG C, FU N Q, LIU F Y, et al. Highly efficient perovskite solar cells with precursor composition-dependent morphology[J]. Solar Energy Materials and Solar Cells, 2016, 145:231-237. [40] ZHAO Y X, ZHU K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:Structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(18):9412-9418. [41] ZHAO Y X, KAI Z. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition[J]. Journal of the American Chemical Society, 2014, 136(35):12241-12244. [42] ZUO C T, DING L M. An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive[J]. Nanoscale, 2014, 6(17):9935-9938. [43] WANG Z W, ZHOU Y Y, PANG S P, et al. Additive-modulated evolution of CH(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells[J]. Chemistry of Materials, 2015, 27(20):7149-7155. [44] HEO J H, SONG D H, HAN H J, et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate[J]. Advanced Materials, 2015, 27(22):3424-3430. [45] KIM J, YUN J S, WEN X M, et al. Nucleation and growth control of HC(NH2)2PbI3 for planar perovskite solar cell[J]. The Journal of Physical Chemistry C, 2016, 120(20):11262-11267. [46] ZHANG W, PATHAK S, SAKAI N, et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells[J]. Nature Communications, 2015, 6:10030. [47] HUANG J, WANG M Q, DING L, et al. Hydrobromic acid assisted crystallization of MAPbI3-xClx for enhanced power conversion efficiency in perovskite solar cells[J]. RSC Advances, 2016, 6(61):55720-55725. [48] MEI A Y, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science,2014, 345(6194):295-298. [49] LIANG P W, LIAO C Y, CHUEH C C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced Materials, 2014, 26(22):3748-3754. [50] LI X, DAR M I, YI C Y, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acidω-ammonium chlorides[J]. Nature Chemistry, 2015, 7(9):703-711. [51] ZHAO Y C, WEI J, LI H, et al. A polymer scaffold for self-healing perovskite solar cells[J]. Nature Communications, 2016, 7:10228. [52] YANG S, WANG Y, LIU P, et al. Functionalization of perovskite thin films with moisture-tolerant molecules[J]. Nature Energy, 2016, 1:15016. [53] KE W J, FANG G J, WAN J W, et al. Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells[J]. Nature Communications, 2015, 6:6700. [54] JENG J Y, CHIANG Y F, LEE M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27):3727-3732. [55] JENG J Y, CHEN K C, CHIANG T Y, et al. Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2014, 26(24):4107-4113. [56] SALIBA M, TAN K W, SAI H, et al. Influence of thermal processing protocol upon the crystallization and photovoltaic performance of organic-inorganic lead trihalide perovskites[J]. The Journal of Physical Chemistry C, 2014, 118(30):17171-17177. [57] BURSCHKA J, PELLET N, MOONS J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458):316-319. [58] LIU T H, HU Q, WU J, et al. Mesoporous PbI2 scaffold for high-performance planar heterojunction perovskite solar cells[J]. Advanced Energy Materials, 2016, 6(3):1501890. [59] WU Y Z, ISLAM A, YANG X D, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition[J]. Energy & Environmental Science, 2014, 7(9):2934-2938. [60] SHI J J, LUO Y H, WEI H Y, et al. Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(12):9711-9718. [61] BI D Q, El-ZOHRY A M, HAGFELDT A, et al. Improved morphology control using a modified two-step method for efficient perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2014, 6(21):18751-18757. [62] DHARANI S, DEWI H A, PRABHAKAR R R, et al. Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells[J]. Nanoscale, 2014, 6(22):13854-13860. [63] XIAO Z G, BI C, SHAO Y C, et al. Efficient high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy & Environmental Science, 2014, 7(8):2619-2623. [64] IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nature Nanotechnology, 2014, 9(11):927-932. [65] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15):9019-9038. [66] ZHOU Y, YANG M, VASILIEV A L, et al. Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(17):9249-9256. [67] ZHANG T Y, YANG M J, ZHAO Y X, et al. Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion[J]. Nano Letters, 2015, 15(6):3959-3963. [68] LIU J, SHIRAI Y, YANG X D, et al. High-quality mixedorganic-cation perovskites from a phase-pure non-stoichiometric intermediate (FAI)1-x-PbI2 for solar cells[J]. Advanced Materials, 2015, 27(33):4918-4923. [69] LI W Z, FAN J D, LI J W, et al. Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%[J]. The Journal of the American Chemical Society, 2015, 137(32):10399-10405. [70] ZHU L F, SHI J J, LV S T, et al. Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells[J]. Nano Energy, 2015, 15:540-548. [71] LIU W B, LI L, CHEN M, et al. Nucleation mechanism of CH3NH3PbI3 with two-step method for rational design of high performance perovskite solar cells[J]. Journal of Alloys and Compounds, 2017, 697:374-379. [72] SHI J, WEI H, LV S T, et al. Control of charge transport in the perovskite CH3NH3PbI3 thin film[J]. Chemphyschem:A European Journal of Chemical Physics and Physical Chemistry, 2015, 16(4):842-847. [73] DONG Q, YUAN Y, SHAO Y, et al. Abnormal crystal growth in CH3NH3PbI3-xClx using a multi-cycle solution coating process[J]. Energy & Environmental Science, 2015, 8(8):2464-2470. [74] HUANG J S, SHAO Y C, DONG Q F. Organometal trihalide perovskite single crystals:a next wave of materials for 25% efficiency photovoltaics and applications beyond?[J]. Journal of Physical Chemistry Letters, 2015, 6(16):3218-3227. [75] XIAO Z, DONG Q, BI C, et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement[J]. Advanced Materials, 2014, 26(37):6503-6509. [76] BI C, WANG Q, SHAO Y C, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nature Communications, 2015, 6:7747. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[3] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[4] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[5] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[6] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[7] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[8] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[9] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[10] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[11] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[12] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[13] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[14] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[15] | LIANG Yijing, MA Yan, LU Zhanfeng, QIN Fusheng, WAN Junjie, WANG Zhiyuan. Experimental investigation on the anti-coking performance of La1-x Sr x MnO3 perovskite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1769-1778. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |