Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (06): 2147-2158.DOI: 10.16085/j.issn.1000-6613.2017-1604
Previous Articles Next Articles
XIE Xinshuo, YANG Weijuan, SHI Wei, ZHANG Shengsheng, WANG Zhihua, ZHOU Junhu
Received:
2017-08-01
Revised:
2017-09-18
Online:
2018-06-05
Published:
2018-06-05
谢欣烁, 杨卫娟, 施伟, 张圣胜, 王智化, 周俊虎
通讯作者:
杨卫娟,博士,教授,研究方向为能源与环境领域的燃烧科学与技术。
作者简介:
谢欣烁(1993-),男,硕士研究生。
基金资助:
CLC Number:
XIE Xinshuo, YANG Weijuan, SHI Wei, ZHANG Shengsheng, WANG Zhihua, ZHOU Junhu. Life cycle assessment of technologies for hydrogen production-a review[J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2147-2158.
谢欣烁, 杨卫娟, 施伟, 张圣胜, 王智化, 周俊虎. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(06): 2147-2158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1604
[1] SMITKOVA M, JANICEK F, RICCARDI J. Life cycle analysis of processes for hydrogen production[J]. International Journal of Hydrogen Energy, 2011, 36(13):7844-7851. [2] 晓华. 清洁燃料刺激氢气需求将强劲增长[J]. 中国石油石化, 2015(10):9. XIAO H. Demand of hydrogen will grow strongly due to the increment of clean fuel[J]. China Petrochem, 2015(10):9. [3] 朱凌岳,王宝辉,吴红军. 电解水煤浆制氢技术研究进展[J]. 化工进展, 2016, 35(10):3129-3135. ZHU L Y, WANG B H, WU H J. Review on electrochemical splitting of coal water slurry for hydrogen[J]. Chemical Industry and Engineering Progress, 2016, 35(10):3129-3135. [4] PARAJULI R, KNUDSEN M T, BIRKVED M, et al. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach[J]. Science of the Total Environment, 2017, 598:497-512. [5] 袁宝荣,聂祚仁,狄向华,等. 乙烯生产的生命周期评价(Ⅰ)目标与范围的确定和清单分析[J]. 化工进展, 2006, 25(3):334-336. YUAN B R, NIE Z R, DI X H, et al. Life cycle assessment of ethylene production (Ⅰ) Goal and scope definition and inventory analysis[J]. Chemical Industry and Engineering Progress, 2006, 25(3):334-336. [6] KHANG D S, TAN R R, UY O M, et al. Design of experiments for global sensitivity analysis in life cycle assessment:the case of biodiesel in Vietnam[J]. Resources Conservation & Recycling, 2017, 119:12-23. [7] 王玉涛,王丰川,洪静兰,等. 中国生命周期评价理论与实践研究进展及对策分析[J]. 生态学报, 2016, 36(22):7179-7184. WANG Y T, WANG F C, HONG J L, et al. The development of life cycle assessment theory research in China and analysis of countermeasures[J]. Acta Ecologica Sinica, 2016, 36(22):7179-7184. [8] 莫淳,廖文杰,梁斌,等. 工业固废活化钾长石-CO2 矿化提钾的生命周期碳排放与成本评价[J]. 化工学报, 2017, 68(6):2501-2509. MO C, LIAO W J, LIANG B, et al. Life-cycle greenhouse gas emissions and cost of potassium extraction and CO2 mineralization via K-feldspar——industrial solid waste calcination[J]. CIESC Journal, 2017, 68(6):2501-2509. [9] BALDINI C, GARDONI D, GUARINO M. A critical review of the recent evolution of life cycle assessment applied to milk production[J]. Journal of Cleaner Production, 2017, 140:421-435. [10] LI Y, GUO L, ZHANG X, et al. Hydrogen production from coal gasification in supercritical water with a continuous flowing system[J]. International Journal of Hydrogen Energy, 2010, 35(7):3036-3045. [11] CETINKAYA E, DINCER I, NATERER G F. Life cycle assessment of various hydrogen production methods[J]. International Journal of Hydrogen Energy, 2012, 37(3):2071-2080. [12] 李奕阳. 几种制氢方法的生命周期评价研究[D]. 西安:西安建筑科技大学, 2010. LI Y Y. Research on evaluating the several methods of hydrogen production technology by life cycle assessment[D]. Xi'an:Xi'an University of Architecture and Technology, 2010. [13] BURMISTRZ P, CHMIELNIAK T, CZEPIRSKI L, et al. Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification[J]. Journal of Cleaner Production, 2016, 139:858-865. [14] 朱宇. 天然气制氢工艺现状及发展[J]. 化学工程与装备, 2016(7):213-214. ZHU Y. The current situation and development of technologies for hydrogen production[J]. Chemical Engineering & Equipment, 2016(7):213-214. [15] WEI W S, DU W, XU J, et al. Study on a coupling reactor for catalytic partial oxidation of natural gas to syngas[J]. International Journal of Chemical Reactor Engineering, 2011, 9(1). DOI:10.2202/1542-6580.2551 [16] SPATH P L, MANN M K. Life cycle assessment of hydrogen production via natural gas steam reforming[R]. Washington D C:Office of Energy Efficiency & Renewable Energy, 2000. [17] SULEMAN F, DINCER I, AGELIN-CHAAB M. Environmental impact assessment and comparison of some hydrogen production options[J]. International Journal of Hydrogen Energy, 2015, 40(21):6976-6987. [18] AMRAN U I, AHMAD A, OTHMAN M R. Life cycle assessment of simulated hydrogen production by methane steam reforming[J]. Australian Journal of Basic & Applied Sciences, 2017, 11(113):43-50. [19] BHANDARI R, TRUDEWIND C A, ZAPP P. Life cycle assessment of hydrogen production via electrolysis:a review[J]. Journal of Cleaner Production, 2014, 85:151-163. [20] DUFOUR J, MORENO J, GALVEZ J L, et al. Life cycle assessment of hydrogen production by methane decomposition using carbonaceous catalysts[J]. International Journal of Hydrogen Energy, 2010, 35(3):1205-1212. [21] POSTELS S, ABANADES A, ASSEN N V D, et al. Life cycle assessment of hydrogen production by thermal cracking of methane based on liquid-metal technology[J]. International Journal of Hydrogen Energy, 2016, 41(48):23204-23212. [22] PLEVAN M, GEIBLER T, ABANADES A, et al. Thermal cracking of methane in a liquid metal bubble column reactor:experiments and kinetic analysis[J]. International Journal of Hydrogen Energy, 2015, 40(25):8020-8033. [23] WANG Z L, NATERER G F, GABRIEL K S, et al. Comparison of sulfur-iodine and copper-chlorine thermochemical hydrogen production cycles[J]. International Journal of Hydrogen Energy, 2010, 35(10):4820-4830. [24] OZBILEN A, DINCER I, ROSEN M A. Environmental impact assessment of nuclear assisted hydrogen production via Cu-Cl thermochemical cycles[J]. Sustainable Cities & Society, 2013, 7(1):16-24. [25] 张平, 于波, 徐景明. 核能制氢技术的发展[J]. 核化学与放射化学, 2011, 33(4):193-203. ZHANG P, YU B, XU J M. Development of the technology for nuclear production of hydrogen[J]. Journal of Nuclear and Radiochemistry, 2011, 33(4):193-203. [26] 朱俏俏,王智化,杨剑,等. 硫碘制氢中碘量对Bunsen反应影响的实验研究[J]. 浙江大学学报(工学版), 2011, 45(10):1786-1790. ZHU Q Q, WANG Z H, YANG J, et al. Experimental study of influence of iodine content on Bunsen reaction in the sulfur-iodine cycle for hydrogen production[J]. Journal of Zhejiang University (Engineer Science), 2011, 45(10):1786-1790. [27] OZBILEN A, DINCER I,ROSEN M A. Comparative environmental impact and efficiency assessment of selected hydrogen production methods[J]. Environmental Impact Assessment Review, 2013, 42(42):1-9. [28] SOLLI C, STROMMAN A H, HERTWICH E G. Fission or fossil:life cycle assessment of hydrogen production[J]. Proceedings of the IEEE, 2006, 94(10):1785-1794. [29] GIRALDI M R, FRANCOIS J L, CASTRO-URIEGAS D. Life cycle greenhouse gases emission analysis of hydrogen production from S-I thermochemical process coupled to a high temperature nuclear reactor[J]. International Journal of Hydrogen Energy, 2012, 37(19):13933-13942. [30] NATERER G F, SUPPIAH S, STOLBERG L, et al. Progress of international hydrogen production network for the thermochemical Cu-Cl cycle[J]. International Journal of Hydrogen Energy, 2013, 38(2):740-759. [31] WU W, CHEN H Y, HWANG J J. Energy analysis of a class of copper-chlorine (Cu-Cl) thermochemical cycles[J]. International Journal of Hydrogen Energy, 2017, 42(25):15990-16002. [32] OZBILEN A, DINCER I, ROSEN M A. Environmental evaluation of hydrogen production via thermochemical water splitting using the Cu-Cl cycle:a parametric study[J]. International Journal of Hydrogen Energy, 2011, 36(16):9514-9528. [33] URSUA A, GANDIA L M, SANCHIS P. Hydrogen production from water electrolysis:current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2):410-426. [34] SPATH P L, MANN M K. Life cycle assessment of renewable hydrogen production via wind/electrolysis[R]. National Renewable Energy Laboratory, 2004. [35] GHANDEHARIUN S, KUMAR A. Life cycle assessment of wind-based hydrogen production in Western Canada[J]. International Journal of Hydrogen Energy, 2016, 41(22):9696-9704. [36] REITER G, LINDORFER J. Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology[J]. International Journal of Life Cycle Assessment, 2015, 20(4):477-489. [37] DUFOUR J, SERRANO D P, GALVEZ J L, et al. Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources[J]. International Journal of Hydrogen Energy, 2012, 37(2):1173-1183. [38] LIN Y C, WU T Y, LIU W Y, et al. Production of hydrogen from rice straw using microwave-induced pyrolysis[J]. Fuel, 2014, 119(3):21-26. [39] IRIBARREN D, SUSMOZAS A, PETRAKOPOULOU F, et al. Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification[J]. Journal of Cleaner Production, 2014, 69(8):165-175. [40] KANG S G, SON S R, SANG D K, et al. Hydrogen production from two-step steam methane reforming in a fluidized bed reactor[J].International Journal of Hydrogen Energy, 2009, 34(3):1301-1309. [41] BARELLI L, BIDINI G, GALLORINI F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology:a review[J]. Energy, 2008, 33(4):554-570. [42] BRAGA L B, SILVEIRA J L, SILVA M E D, et al. Hydrogen production by biogas steam reforming:a technical, economic and ecological analysis[J]. Renewable & Sustainable Energy Reviews, 2013, 28:166-173. [43] HAMEDI M R, TSOLAKIS A, LAU C S. Biogas upgrading for on-board hydrogen production:reforming process CFD modelling[J]. International Journal of Hydrogen Energy, 2014, 39(24):12532-12540. [44] RAHIMPOUR M R, IRANSHAHI D, JOKAR S M, et al. Assessment and comparison of different catalytic coupling exothermic and endothermic reactions:a review[J]. Applied Energy, 2012, 99(2):496-512. [45] SUSMOZAS A, IRIBARREN D, DUFOUR J. Life-cycle performance of indirect biomass gasification as a green alternative to steam methane reforming for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(24):9961-9972. [46] HAJJAJI N, MARTINEZ S, TRABLY E, et al. Life cycle assessment of hydrogen production from biogas reforming[J]. International Journal of Hydrogen Energy, 2016, 41(14):6064-6075. [47] SWARR T E, HUNKELER D, KLÖPFFER W, et al. Environmental life-cycle costing:a code of practice[J]. International Journal of Life Cycle Assessment, 2011, 16(5):389-391. [48] ABANADES A. The challenge of hydrogen production for the transition to a CO2-free economy[J]. Agronomy Research, 2012, 10(1):11-16. [49] HE C, SUN H, XU Y, et al. Hydrogen refueling station siting of expressway based on the optimization of hydrogen life cycle cost[J]. International Journal of Hydrogen Energy, 2017, 42(26):16313-16324. [50] OZBILEN A, DINCER I, ROSEN M A. Development of a four-step Cu-Cl cycle for hydrogen production-Part I:exergoeconomic and exergoenvironmental analyses[J]. International Journal of Hydrogen Energy, 2016, 41(19):7814-7825. [51] ORHAN M F. Conceptual design, analysis and optimization of nuclear-based hydrogen production via copper-chlorine thermochemical cycles[J]. British Journal of Dermatology, 2011, 68(9):303-306. [52] ACAR C, DINCER I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources[J]. International Journal of Hydrogen Energy, 2014, 39(1):1-12. [53] OLATEJU B, KUMAR A, SECANELL M. A techno-economic assessment of large scale wind-hydrogen production with energy storage in Western Canada[J]. International Journal of Hydrogen Energy, 2016, 41(21):8755-8776. [54] ALAZEMI J, ANDREWS J. Automotive hydrogen fuelling stations:an international review[J]. Renewable & Sustainable Energy Reviews, 2015, 48:483-499. [55] LEMUS R G, DUART J M M. Updated hydrogen production costs and parities for conventional and renewable technologies[J]. International Journal of Hydrogen Energy, 2010, 35(9):3929-3936. [56] WULF C, KALTSCHMITT M. Life cycle assessment of hydrogen supply chain with special attention on hydrogen refuelling stations[J]. International Journal of Hydrogen Energy, 2012, 37(21):16711-16721. |
[1] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[2] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[3] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[4] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[5] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[6] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[7] | WANG Yunqing, YANG Guorui, YAN Wei. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. |
[8] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[9] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[10] | XIA Shaobo, DUAN Lu, WANG Jianpeng, JI Renshan. Effect of water content of fly ash on the performance of coupling reinforced electrostatic-fabric integrated precipitator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2101-2108. |
[11] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[12] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[13] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[14] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[15] | YAO Lun, ZHOU Yongjin. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 16-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |