Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6695-6704.DOI: 10.16085/j.issn.1000-6613.2024-1589
• Resources and environmental engineering • Previous Articles
TAN Jing(
), YIN Zhifan, ZHU Wenlei, YIN Hongyuan, HUANG Haodong, XU Fengshi, YANG Weimin, AN Ying(
)
Received:2024-09-30
Revised:2025-01-07
Online:2025-12-08
Published:2025-11-25
Contact:
AN Ying
谭晶(
), 尹志凡, 朱文雷, 尹宏远, 黄浩东, 徐逢时, 杨卫民, 安瑛(
)
通讯作者:
安瑛
作者简介:谭晶(1991—),女,博士,教授,研究方向为高分子材料成型加工。E-mail:tanj@mail.buct.edu.cn。
基金资助:CLC Number:
TAN Jing, YIN Zhifan, ZHU Wenlei, YIN Hongyuan, HUANG Haodong, XU Fengshi, YANG Weimin, AN Ying. Stability study of carbon black/xanthan gum water-based nanofluids[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6695-6704.
谭晶, 尹志凡, 朱文雷, 尹宏远, 黄浩东, 徐逢时, 杨卫民, 安瑛. 炭黑/黄原胶水基纳米流体的稳定性[J]. 化工进展, 2025, 44(11): 6695-6704.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1589
| [1] | OMER Abdeen Mustafa. Energy, environment and sustainable development[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2265-2300. |
| [2] | LI G, LI M, TAYLOR R, et al. Solar energy utilisation: Current status and roll-out potential[J]. Applied Thermal Engineering, 2022, 209: 118285. |
| [3] | 李艳, 洪文鹏, 牛晓娟, 等. 水基Ag@TiO2纳米流体液滴光热蒸发特性研究[J]. 工程热物理学报, 2022, 43(6): 1467-1472. |
| LI Yan, HONG Wenpeng, NIU Xiaojuan, et al. Investigation on photothermal evaporation characteristics of water-based Ag@TiO2 nanofluid droplets[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1467-1472. | |
| [4] | HAZRA S K, GHOSH S, NANDI T K. Photo-thermal conversion characteristics of carbon black-ethylene glycol nanofluids for applications in direct absorption solar collectors[J]. Applied Thermal Engineering, 2019, 163: 114402. |
| [5] | 张俊, 李苏巧, 彭林明, 等. 纳米流体强化气液传质研究进展[J]. 化工进展, 2013, 32(4): 732-739. |
| ZHANG Jun, LI Suqiao, PENG Linming, et al. Progress in research on gas-liquid mass transfer enhancement of nanofluids[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 732-739. | |
| [6] | 王婷婷, 吴子华, 黄玥铭, 等. 炭黑骨胶纳米流体的制备及其光热转换性能[J]. 上海第二工业大学学报, 2022, 39(4): 292-300. |
| WANG Tingting, WU Zihua, HUANG Yueming, et al. Preparation and photothermal conversion properties of carbon black-bone glue nanofluids[J]. Journal of Shanghai Polytechnic University, 2022, 39(4): 292-300. | |
| [7] | 陈梅洁. Au纳米流体的制备及其光热转换特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
| CHEN Meijie. Preparation of Au nanofluid and its photothermal conversion characteristics[D]. Harbin: Harbin Institute of Technology, 2016. | |
| [8] | 李兴, 汪昭玮, 孙一峰. 分散剂对纳米流体影响的研究进展[J]. 材料导报, 2015, 29(23): 30-35. |
| LI Xing, WANG Zhaowei, SUN Yifeng. Research of surfactant on the influence of nanofluid[J]. Materials Reports, 2015, 29(23): 30-35. | |
| [9] | 程波, 杜垲, 张小松, 等. 氨水-纳米炭黑纳米流体的稳定性[J]. 化工学报, 2008, 59(S2): 49-52. |
| CHENG Bo, DU Kai, ZHANG Xiaosong, et al. Stability of ammonia-carbon black nanofluids[J]. CIESC Journal, 2008, 59(S2): 49-52. | |
| [10] | YANG Liu, DU Kai, NIU Xiaofeng, et al. An experimental and theoretical study of the influence of surfactant on the preparation and stability of ammonia-water nanofluids[J]. International Journal of Refrigeration, 2011, 34(8): 1741-1748. |
| [11] | 李凯, 魏鹤琳, 左夏华, 等. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验[J]. 化工进展, 2024, 43(4): 1944-1952. |
| LI Kai, WEI Helin, ZUO Xiahua, et al. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. | |
| [12] | MARCOS Marco A, Jacek FAL, VALLEJO Javier P, et al. Thermophysical, rheological and dielectric behaviour of stable carbon black dispersions in PEG200[J]. Journal of Molecular Liquids, 2023, 391: 123216. |
| [13] | Alexandra GIMENO-FURIO, NAVARRETE Nuria, MONDRAGON Rosa, et al. Stabilization and characterization of a nanofluid based on a eutectic mixture of diphenyl and diphenyl oxide and carbon nanoparticles under high temperature conditions[J]. International Journal of Heat and Mass Transfer, 2017, 113: 908-913. |
| [14] | KUMAR Anuj, RAO Kummara Madhusudana, HAN Sung Soo. Application of xanthan gum as polysaccharide in tissue engineering: A review[J]. Carbohydrate Polymers, 2018, 180: 128-144. |
| [15] | BENNY Indu Sara, GUNASEKAR V, PONNUSAMI V. Review on application of xanthan gum in drug delivery[J]. International Journal of PharmTech Research, 2014, 6(4): 1322-1326. |
| [16] | BEJENARIU Anca, POPA Marcel, DULONG Virginie, et al. Trisodium trimetaphosphate crosslinked xanthan networks: Synthesis, swelling, loading and releasing behaviour[J]. Polymer Bulletin, 2009, 62(4): 525-538. |
| [17] | POOJA Deep, PANYARAM Sravani, KULHARI Hitesh, et al. Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity[J]. Carbohydrate Polymers, 2014, 110: 1-9. |
| [18] | LIU Guansheng, ZHAN Weiyong, HUO Lili, et al. Kinetic stability of Fe-based nanoparticles with rheological modification by xanthan gum: A critical stabilization concentration and the underlying mechanism[J]. International Journal of Biological Macromolecules, 2024, 266: 131270. |
| [19] | COMBA Silvia, SETHI Rajandrea. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum[J]. Water Research, 2009, 43(15): 3717-3726. |
| [20] | XUE Dingqi, SETHI Rajandrea. Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles[J]. Journal of Nanoparticle Research, 2012, 14(11): 1239. |
| [21] | XIN Jia, TANG Fenglin, ZHENG Xilai, et al. Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media[J]. Water Research, 2016, 88: 199-206. |
| [22] | REN Liming, DONG Jun, CHI Zifang, et al. Rheology modification of reduced graphene oxide based nanoscale zero valent iron (nZVI/rGO) using xanthan gum (XG): Stability and transport in saturated porous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 34-41. |
| [23] | MAHBUBUL I M, ELCIOGLU E B, AMALINA M A, et al. Stability, thermophysical properties and performance assessment of alumina-water nanofluid with emphasis on ultrasonication and storage period[J]. Powder Technology, 2019, 345: 668-675. |
| [24] | 熊亚选, 宋超宇, 药晨华, 等. 纳米流体稳定性研究综述[J]. 华电技术, 2021, 43(7): 68-74. |
| XIONG Yaxuan, SONG Chaoyu, YAO Chenhua, et al. Review on the stability of nanofluids[J]. Huadian Technology, 2021, 43(7): 68-74. | |
| [25] | Wisut CHAMSA-ARD, BRUNDAVANAM Sridevi, FUNG Chun Che, et al. Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review[J]. Nanomaterials, 2017, 7(6): 131. |
| [26] | JANSSON Per-Erik, KENNE Lennart, LINDBERG Bengt. Structure of the extracellular polysaccharide from xanthomonas campestris[J]. Carbohydrate Research, 1975, 45(1): 275-282. |
| [27] | LIU Guansheng, ZHONG Hua, AHMAD Zulfiqar, et al. Transport of engineered nanoparticles in porous media and its enhancement for remediation of contaminated groundwater[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(22): 2301-2378. |
| [28] | HE Feng, ZHAO Dongye. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers[J]. Environmental Science & Technology, 2007, 41(17): 6216-6221. |
| [29] | DERJAGUIN B, LANDAU L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J]. Progress in Surface Science, 1993, 43(1/2/3/4): 30-59. |
| [30] | VERWEY E J W. Theory of the stability of lyophobic colloids[J]. The Journal of Physical and Colloid Chemistry, 1947, 51(3): 631-636. |
| [31] | COMBA Silvia, DALMAZZO Davide, SANTAGATA Ezio, et al. Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media[J]. Journal of Hazardous Materials, 2011, 185(2/3): 598-605. |
| [1] | QIN Fei, ZHANG Zhi, SONG Guangchun, WANG Wuchang, LI Yuxing, WANG Shixin, HE Sicheng, WANG Jiangyan. Advances in research on the molecular dynamics behaviors of hydrate-based hydrogen storage [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 112-123. |
| [2] | MA Xiaobiao, LIU Han, WANG Weihuan, MIAO Peipei, JI Yinghui, CHEN Boyang, PENG Xiaowei, XU Qiang, JIN Fengying, MA Mingchao, WANG Yinbin, GUO Chunlei. Effect of acid and phosphorus composite modification on the catalytic cracking performance of ZSM-5 molecular sieve [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 197-204. |
| [3] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [4] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [5] | LI Zhifu, YANG Xiaodong, WANG Baocai, HU Changliu, PEI Jikai, YAN Longfang, WU Ruifang, ZHANG Changsheng, WANG Yongzhao. Synthesis and properties of high temperature retarder HJ-1 [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5092-5100. |
| [6] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [7] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [8] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [9] | LI Xiang, WU Zhangyong, JIANG Jiajun, ZHU Qichen, GONG Qiu. Tribological properties of seawater-based MoS2/SiC binary nanofluids [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4050-4060. |
| [10] | FU Yuanpeng, DONG Xianshu, MA Xiaomin, FAN Yuping. Mechanism study on preparation of LiNi1/3Co1/3Mn1/3O2 ternary electrode material precursor by liquid sol-gel method [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3561-3569. |
| [11] | TAO Jinquan, JIA Yijing, BAI Tianyu, YAO Rongpeng, HUANG Wenbin, CUI Yan, ZHOU Yasong, WEI Qiang. Synthesis and catalytic MTP performance of Silicalite-1 zeolite with low cost [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1550-1558. |
| [12] | BAI Zhongliang, LI Ping, WANG Hui, LI Wei, ZHANG Qiang, LI Ning. Proportioning design and anti-aging performance of asphalt rejuvenator based on response surface methodology [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1607-1618. |
| [13] | CHENG Chonglyu, SHAN Conghui, ZHANG Mengfan, WEN X Jennifer, XU Baopeng. Research progress of hydrogen safety modeling [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1285-1297. |
| [14] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [15] | ZHANG Huanling, MA Huixia, ZHOU Feng, ZHAO Chenghao, ZHU Xiaolin, WANG Guowei, LI Chunyi. Effect of introduced In species on propane dehydrogenation over Ge/SiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 879-886. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |