Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6660-6673.DOI: 10.16085/j.issn.1000-6613.2024-1710
• Resources and environmental engineering • Previous Articles
HE Shumin1(
), XIONG Wei2, GAO Xiaolong2, ZHU Yaonan3, ZHANG Enbo1, WANG Youzhao1, ZHU Tong1(
)
Received:2024-10-24
Revised:2025-01-08
Online:2025-12-08
Published:2025-11-25
Contact:
ZHU Tong
贺舒敏1(
), 熊伟2, 高小龙2, 朱曜南3, 张恩博1, 王有昭1, 朱彤1(
)
通讯作者:
朱彤
作者简介:贺舒敏(1999—),女,博士研究生,研究方向为电容去离子技术及电极材料。E-mail:1808035639@qq.com。
基金资助:CLC Number:
HE Shumin, XIONG Wei, GAO Xiaolong, ZHU Yaonan, ZHANG Enbo, WANG Youzhao, ZHU Tong. Research progress of capacitive deionization technology in water treatment[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6660-6673.
贺舒敏, 熊伟, 高小龙, 朱曜南, 张恩博, 王有昭, 朱彤. 电容去离子技术在水处理中的研究进展[J]. 化工进展, 2025, 44(11): 6660-6673.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1710
| 参数 | 意义 |
|---|---|
| 孔径分布 | 孔径及其分布直接影响离子的去除效果和双电层作用的发挥;孔径若小于目标离子的尺寸,虽然能够增加材料的总表面积,但其对目标离子的去除效果却不够显著 |
| 比表面积 | 必须提供充足的空间使离子能够附着在电极表面,这将有助于提高电极的比电容 |
| 电导率 | 高导电性或低电阻值能够促进电荷的迅速转移,从而加快离子的吸附与解吸过程 |
| 电极表面活性 | 电极表面上可接触的离子区域越多,离子去除的效率就越高;虽然更大比表面积提高了可接触表面的机会,但这并不一定保证材料在作为电极时具有较高的去除率;孔隙的开口尺寸、孔道的物理布局等因素也会影响活性或可接触表面的有效性 |
| 电极稳定性 | 电极需要在所施加的电压范围和其所处的化学环境中保持稳定性 |
| 成本 | 需要考虑电极的制作成本和后续运行费用 |
| 参数 | 意义 |
|---|---|
| 孔径分布 | 孔径及其分布直接影响离子的去除效果和双电层作用的发挥;孔径若小于目标离子的尺寸,虽然能够增加材料的总表面积,但其对目标离子的去除效果却不够显著 |
| 比表面积 | 必须提供充足的空间使离子能够附着在电极表面,这将有助于提高电极的比电容 |
| 电导率 | 高导电性或低电阻值能够促进电荷的迅速转移,从而加快离子的吸附与解吸过程 |
| 电极表面活性 | 电极表面上可接触的离子区域越多,离子去除的效率就越高;虽然更大比表面积提高了可接触表面的机会,但这并不一定保证材料在作为电极时具有较高的去除率;孔隙的开口尺寸、孔道的物理布局等因素也会影响活性或可接触表面的有效性 |
| 电极稳定性 | 电极需要在所施加的电压范围和其所处的化学环境中保持稳定性 |
| 成本 | 需要考虑电极的制作成本和后续运行费用 |
| 电极材料 | 溶液中的离子 | 选择性去除 | 选择性机制 | 参考文献 |
|---|---|---|---|---|
| λ-MnO2尖晶石型3D还原氧化石墨烯(3D-rGO)阴极和活性炭阳极 | Na+、K+、Li+、Ca2+、Mg2+ | Li+ | 离子筛分效应 | [ |
| 单价选择性阳离子交换膜 | Mg2+、Li+ | Li+ | 离子交换机制 | [ |
| 锂锰氧化物阴极和碳阳极 | Na+、K+、Li+、Ca2+、Mg2+ | Li+≥Mg2+>Ca2+ K+>Na+ | 离子半径 | [ |
| 尖晶石锂锰钛氧化物(LMTO)阴极和活性炭阳极 | Na+、K+、Li+、Ca2+、Mg2+、Cl-、Br-、HCO | Li+ | 化学亲和力和离子半径 | [ |
| 锂锰钛氧化物(LMTO) | Li+、Ca2+、Mg2+、Na+、K+、Sr2+、Cl-、HCO | Li+ | 氢和锂之间的逆转反应 | [ |
| 尖晶石锂锰钛氧化物(LMTO)阴极和活性炭阳极 | Na+、K+、Li+、Ca2+、Mg2+、Cl-、Br-、HCO | Li+ | 在LMTO电极上进行离子交换和氧化还原反应 | [ |
| λ-MnO2纳米棒电池正极和活性炭阳极 | Na+、K+、Li+、Ca2+、Mg2+ | Na+、K+、Li+、Ca2+、Mg2+ | λ-MnO2通过法拉第氧化还原反应捕获Li+ | [ |
| 电极材料 | 溶液中的离子 | 选择性去除 | 选择性机制 | 参考文献 |
|---|---|---|---|---|
| λ-MnO2尖晶石型3D还原氧化石墨烯(3D-rGO)阴极和活性炭阳极 | Na+、K+、Li+、Ca2+、Mg2+ | Li+ | 离子筛分效应 | [ |
| 单价选择性阳离子交换膜 | Mg2+、Li+ | Li+ | 离子交换机制 | [ |
| 锂锰氧化物阴极和碳阳极 | Na+、K+、Li+、Ca2+、Mg2+ | Li+≥Mg2+>Ca2+ K+>Na+ | 离子半径 | [ |
| 尖晶石锂锰钛氧化物(LMTO)阴极和活性炭阳极 | Na+、K+、Li+、Ca2+、Mg2+、Cl-、Br-、HCO | Li+ | 化学亲和力和离子半径 | [ |
| 锂锰钛氧化物(LMTO) | Li+、Ca2+、Mg2+、Na+、K+、Sr2+、Cl-、HCO | Li+ | 氢和锂之间的逆转反应 | [ |
| 尖晶石锂锰钛氧化物(LMTO)阴极和活性炭阳极 | Na+、K+、Li+、Ca2+、Mg2+、Cl-、Br-、HCO | Li+ | 在LMTO电极上进行离子交换和氧化还原反应 | [ |
| λ-MnO2纳米棒电池正极和活性炭阳极 | Na+、K+、Li+、Ca2+、Mg2+ | Na+、K+、Li+、Ca2+、Mg2+ | λ-MnO2通过法拉第氧化还原反应捕获Li+ | [ |
| [1] | 董得福, 段茗续, 曾坤, 等. 水资源短缺地区多能互补发电与水资源综合利用竞争关系[J]. 人民黄河, 2024, 46(7): 154-160. |
| DONG Defu, DUAN Mingxu, ZENG Kun, et al. Study on the competitive relationship between multi-energy complementary power generation and comprehensive utilization of water resources in water shortage areas[J]. Yellow River, 2024, 46(7): 154-160. | |
| [2] | 黄思怡, 刘长灏, 冯英楠. 反渗透膜废弃阶段生命周期评价的研究进展[J]. 膜科学与技术, 2024, 44(4): 202-213. |
| HUANG Siyi, LIU Changhao, FENG Yingnan. Research progress on life cycle assessment of end-of-life reverse osmosis membrane[J]. Membrane Science and Technology, 2024, 44(4): 202-213. | |
| [3] | 李志浩. 水体溶解性有机物正向渗透去除特性研究[D]. 济南: 山东建筑大学, 2020. |
| LI Zhihao. Study on removal characteristics of dissolved organic matter in water by forward osmosis[D]. Jinan: Shandong Jianzhu University, 2020. | |
| [4] | 刘晓勇, 查小琴, 罗先甫, 等. 海水淡化设备关键技术与材料的发展现状[J]. 连铸, 2018, 43(6): 22-27. |
| LIU Xiaoyong, ZHA Xiaoqin, LUO Xianfu, et al. A review of the development of sea water desalination techniques and key material[J]. Continuous Casting, 2018, 43(6): 22-27. | |
| [5] | 陈君丹, 杨敏林, 黄斯珉, 等. 基于多孔陶瓷膜的脱硫废水负压式膜蒸馏实验[J]. 化工进展, 2023, 42(12): 6649-6657. |
| CHEN Jundan, YANG Minlin, HUANG Simin, et al. Experimental study on membrane distillation of desulfurization wastewater with negative pressure using porous ceramic membrane[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6649-6657. | |
| [6] | 翟春霖, 段冬, 张欣然, 等. 用于饮用水处理的商品纳滤膜理化特性与过滤性能研究[J]. 给水排水, 2024, 60(6): 57-67. |
| ZHAI Chunlin, DUAN Dong, ZHANG Xinran, et al. Research on the physicochemical properties and filtration performance of commercial nanofiltration membranes for drinking water treatment[J]. Water & Wastewater Engineering, 2024, 60(6): 57-67. | |
| [7] | 邓恩鹏, 王译旋, 田鹏, 等. 电去离子法(EDI)处理含Cr(Ⅵ)废水[J]. 化工环保, 2024, 44(1): 68-72. |
| DENG Enpeng, WANG Yixuan, TIAN Peng, et al. Treatment of Metal Ion Cr(Ⅵ)-containing wastewater by electrodeionization (EDI) method[J]. Environmental Protection of Chemical Industry, 2024, 44(1): 68-72. | |
| [8] | ARNOLD Bill B, MURPHY George W. Studies on the electrochemistry of carbon and chemically-modified carbon surfaces[J]. The Journal of Physical Chemistry, 1961, 65(1): 135-138. |
| [9] | KIM Y H, TANG K, CHANG J, et al. Potential limits of capacitive deionization and membrane capacitive deionization for water electrolysis[J]. Separation Science and Technology, 2019, 54(13): 2112-2125. |
| [10] | 赵爱雪, 周俊强, 耿翠玉, 等. 膜电容去离子技术用于污水处理厂尾水的脱盐试验研究[J]. 盐科学与化工, 2023, 52(1): 15-21. |
| ZHAO Aixue, ZHOU Junqiang, GENG Cuiyu, et al. Experimental study on desalination of tail water from wastewater treatment plant by membrane capacitive deionization technology[J]. Journal of Salt Science and Chemical Industry, 2023, 52(1): 15-21. | |
| [11] | 杨帆. 利用FCDI技术回收磷石膏堆场渗滤液中磷资源的研究[D]. 武汉: 华中科技大学, 2023. |
| YANG Fan. Study on recovery of phosphorus resources from leachate of phosphogypsum yard by FCDI technology[D]. Wuhan: Huazhong University of Science and Technology, 2023. | |
| [12] | LEE Jaehan, KIM Seoni, KIM Choonsoo, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy & Environmental Science, 2014, 7(11): 3683-3689. |
| [13] | 郭其景, 詹伟泉, 王清淼, 等. 二硫化钼作为海水淡化材料的研究进展[J]. 化工进展, 2021, 40(3): 1456-1468. |
| GUO Qijing, ZHAN Weiquan, WANG Qingmiao, et al. Research progress of molybdenum disulfide as a material for seawater desalination[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1456-1468. | |
| [14] | THUMMAR Utpal G, AMALIAR Govind, SUTARIYA Bhaumik, et al. Multi-dimensional parametric study for enhancing Brackish Water Reverse Osmosis membrane performance suited for desalination of low salinity feeds[J]. Water Environment Research, 2024, 96(5): e11028. |
| [15] | SINGH K, ZHANG L, ZUILHOF H, et al. Water desalination with nickel hexacyanoferrate electrodes in capacitive deionization: Experiment, model and comparison with carbon[J]. Desalination, 2020, 496: 114647. |
| [16] | MIRCESKI Valentin, LOVRIC Milivoj, COMPTON Richard G, et al. Revisiting the Butler-Volmer electrode kinetics: Separating the anodic and cathodic current components of a quasi-reversible electrode reaction in staircase voltammetry[J]. Journal of Electroanalytical Chemistry, 2024, 957: 118111. |
| [17] | TARUS Bethwel K, JANDE Yusufu A C, NJAU Karoli N. Electrospun carbon nanofibers for use in the capacitive desalination of water[J]. New Carbon Materials, 2022, 37(6): 1066-1084. |
| [18] | BINDHU Devu, SREEKALA Chandrasekharannair Omanaamma, SHAH Nurulhuda Binti Mohamed, et al. High carbon containing biomaterial offering honeycomb morphology as a charge storing electrode in aqueous alkaline electrolytes[J]. Journal of Electroanalytical Chemistry, 2024, 967: 118423. |
| [19] | ZHAO Chen, WANG Qin, CHANG Shaozhong, et al. Efficient transport system of cultivated mushroom mycelium enables its derived carbon with high performance electrochemical desalination capability[J]. Carbon, 2022, 196: 699-707. |
| [20] | ZHENG Sumei, YUAN Zhihua, DIONYSIOU Dionysios D, et al. Silkworm cocoon waste-derived nitrogen-doped hierarchical porous carbon as robust electrode materials for efficient capacitive desalination[J]. Chemical Engineering Journal, 2023, 458: 141471. |
| [21] | ALOTAIBI Zaid S, ALHARBI Khalid N, ALHARBI Yaseen, et al. Innovative pilot plant capacitive deionization for desalination brackish water[J]. Applied Water Science, 2024, 14(2): 26. |
| [22] | WELGEMOED T J, SCHUTTE C F. Capacitive Deionization Technology™: An alternative desalination solution[J]. Desalination, 2005, 183(1/2/3): 327-340. |
| [23] | JEON Sung Il, PARK Hong Ran, Jeong Gu YEO, et al. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6(5): 1471-1475. |
| [24] | CHEN Taoqin, WEI Sheng, XU Longqian, et al. Simultaneous water softening and selective ammonia nitrogen recovery from coal gasification gray water using an innovative four-chamber flow-electrode electrochemistry system[J]. Desalination, 2024, 576: 117361. |
| [25] | KIM Dr Choonsoo, LEE Juhan, SRIMUK Pattarachai, et al. Concentration-gradient multichannel flow-stream membrane capacitive deionization cell for high desalination capacity of carbon electrodes[J]. ChemSusChem, 2017, 10(24): 4914-4920. |
| [26] | GAO Lijun, DONG Qiang, BAI Silin, et al. Graphene oxide-tuned MoS2 with an expanded interlayer for efficient hybrid capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9690-9697. |
| [27] | 陆洲, 聂小保, 余志, 等. 高硬水软化中Fe3O4诱导结晶对微晶形成的控制[J]. 环境工程学报, 2021, 15(2): 563-571. |
| LU Zhou, NIE Xiaobao, YU Zhi, et al. Control of the microcrystal formation during high-hardness water softening with Fe3O4 induced-crystallization[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 563-571. | |
| [28] | HETTIARACHCHI Eshani, KOTTEGODA Nilwala, A D L Chandani PERERA. Activated coconut coir for removal of water hardness[J]. Desalination and Water Treatment, 2017, 66: 103-110. |
| [29] | NIE Pengfei, HU Bin, SHANG Xiaohong, et al. Highly efficient water softening by mordenite modified cathode in asymmetric capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117240. |
| [30] | HE Zhizhao, MILLER Christopher J, ZHU Yunyi, et al. Membrane capacitive deionization (MCDI): A flexible and tunable technology for customized water softening[J]. Water Research, 2024, 259: 121871. |
| [31] | KIM Jun, JAIN Amit, ZUO Kuichang, et al. Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode[J]. Water Research, 2019, 160: 445-453. |
| [32] | WANG Li, LIN Shihong. Mechanism of selective ion removal in membrane capacitive deionization for water softening[J]. Environmental Science & Technology, 2019, 53(10): 5797-5804. |
| [33] | LEONG, Zhiyi, YANG Huiying. Capacitive deionization of divalent cations for water softening using functionalized carbon electrodes[J]. ACS omega, 2020, 5(5): 2097-2106. |
| [34] | 董吉冉. 木质纤维生物质基功能材料的构建及电化学应用研究[D]. 广州: 华南理工大学, 2023. |
| DONG Jiran. Study on the construction and electrochemical application of wood fiber biomass-based functional materials[D]. Guangzhou: South China University of Technology, 2023. | |
| [35] | LADO Julio J, ZORNITTA Rafael L, VÁZQUEZ RODRÍGUEZ Inés, et al. Sugarcane biowaste-derived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 18992-19004. |
| [36] | TAN Guangcai, WAN Shun, MEI Shuchuan, et al. Boosted brackish water desalination and water softening by facilely designed MnO2/hierarchical porous carbon as capacitive deionization electrode[J]. Water Research X, 2023, 19: 100182. |
| [37] | ZHU Zhonghao, HE Can, SHA Jia, et al. Cation-exchange fibers and silver nanoparticles-modified carbon electrodes for selective removal of hardness ions and simultaneous deactivation of microorganisms in capacitive deionization[J]. Science of the Total Environment, 2024, 923: 171318. |
| [38] | TRINH Ngoc Tuan, CHUNG Sangho, LEE Jae Kwang, et al. Development of high quality Fe3O4/rGO composited electrode for low energy water treatment[J]. Journal of Energy Chemistry, 2016, 25(3): 354-360. |
| [39] | 许春树, 姚庆达, 梁永贤, 等. 金属-有机框架材料的调控策略及其对典型重金属离子的吸附性能[J]. 化工进展, 2023, 42(12): 6518-6534. |
| XU Chunshu, YAO Qingda, LIANG Yongxian, et al. Modulation strategies of metal-organic framework materials and its adsorption performance on typical heavy metal ions[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6518-6534. | |
| [40] | HUYNH Le Thanh Nguyen, NGUYEN Hoang Anh, PHAM Hoang Vinh, et al. Electrosorption of Cu(Ⅱ) and Zn(Ⅱ) in capacitive deionization by KOH activation coconut-shell activated carbon[J]. Arabian Journal for Science and Engineering, 2023, 48(1): 551-560. |
| [41] | ZHAO Chunxia, ZHANG Lifang, GE Rongshu, et al. Treatment of low-level Cu(Ⅱ) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology[J]. Chemosphere, 2019, 217: 763-772. |
| [42] | WANG Tianyu, ZHANG Changyong, BAI Langming, et al. Scaling behavior of iron in capacitive deionization (CDI) system[J]. Water Research, 2020, 171: 115370. |
| [43] | TANG Changbin, LI Yanrong, YU Yongqi, et al. Selective capacitive removal of Pb(Ⅱ) ions from industrial wastewater using NF/Mn2CoO4@MoO2 electrodes[J]. Chemical Engineering Journal, 2024, 495: 153196. |
| [44] | SONG Zhao, LI Lingyu, CHEN Yidi, et al. Efficient removal and recovery of Cd2+ from aqueous solutions by capacitive deionization (CDI) method using biochars[J]. Journal of Materials Science & Technology, 2023, 148: 10-18. |
| [45] | IFTEKHAR Sidra, FAROOQ Muhammad Umar, Mika SILLANPÄÄ, et al. Removal of Ni(Ⅱ) using multi-walled carbon nanotubes electrodes: Relation between operating parameters and capacitive deionization performance[J]. Arabian Journal for Science and Engineering, 2017, 42(1): 235-240. |
| [46] | YU Fei, ZHANG Xiaochen, LIU Peng, et al. “Blockchain-like” MIL-101(Cr)/carbon black electrodes for unprecedented defluorination by capacitive deionization[J]. Small, 2023, 19(10): 2205619. |
| [47] | GAIKWAD Mahendra S, BALOMAJUMDER Chandrajit. Simultaneous electrosorptive removal of chromium(Ⅵ) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study[J]. Separation and Purification Technology, 2017, 186: 272-281. |
| [48] | SUN Fuwei, WANG De, HU Qinyan, et al. Hydrolyzed hydrated titanium oxide on laser-induced graphene as CDI electrodes for U(Ⅵ) adsorption[J]. Langmuir, 2024, 40(1): 704-713. |
| [49] | ZHOU Siyu, GUAN Kecheng, FANG Shang, et al. Nanochannel characteristics contributing to ion/ion selectivity in two-dimensional graphene oxide membranes[J]. Journal of Membrane Science, 2024, 689: 122185. |
| [50] | LI Yanting, STEWART Ty C, TANG Hao L. A comparative study on electrosorptive rates of metal ions in capacitive deionization[J]. Journal of Water Process Engineering, 2018, 26: 257-263. |
| [51] | ZHANG Zongbo, LI Jin, MENG Nan, et al. Simultaneously-efficient electro-sorption of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) by Cu2+ modified superactive carbons[J]. Separation and Purification Technology, 2024, 338: 126604. |
| [52] | BAUTISTA-PATACSIL L, LAZARTE J P L, DIPASUPIL R C, et al. Deionization utilizing reduced graphene oxide-titanium dioxide nanotubes composite for the removal of Pb2+ and Cu2+ [J]. Journal of Environmental Chemical Engineering, 2020, 8(3): 103063. |
| [53] | 卢宗福, 史小红, 李国华. 富营养化咸水湖泊岱海温室气体排放特征及驱动因素分析[J]. 环境科学, 2024, 45(10): 6157-6170. |
| LU Zongfu, SHI Xiaohong, LI Guohua. Greenhouse gas emissions characteristics and driving factors analysis in the eutrophic saline lake Daihai Lake[J]. Environmental Science, 2024, 45(10): 6157-6170. | |
| [54] | 毛华恺, 余洋, 张悦, 等. 生物炭光催化氧化-吸附协同降解亚硝酸盐[J]. 化工进展, 2024, 43(8): 4757-4765. |
| MAO Huakai, YU Yang, ZHANG Yue, et al. Synergistic biochar photocatalytic oxidation-adsorption for nitrite degradation[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4757-4765. | |
| [55] | 王若凡, 田开栋, 杨光, 等. 吸附材料对黄河兰州段河岸带沉积物中氨氮吸附-解吸的影响[J]. 环境工程学报, 2024, 18(7): 1828-1839. |
| WANG Ruofan, TIAN Kaidong, YANG Guang, et al. Effect of adsorption materials on adsorption-desorption of ammonia-nitrogen in riparian sediments in Lanzhou section of the Yellow River[J]. Chinese Journal of Environmental Engineering, 2024, 18(7): 1828-1839. | |
| [56] | 李鹏, 林坤德, 袁东星. 环境水体中硫化物的分析方法: 从实验室分析到原位监测[J]. 环境科学, 2022, 43(11): 4835-4844. |
| LI Peng, LIN Kunde, YUAN Dongxing. Research progress on the determination of sulfide in natural waters: From laboratory analysis to in situ monitoring[J]. Environmental Science, 2022, 43(11): 4835-4844. | |
| [57] | CEN Benqiang, YANG Rui, LI Kexun, et al. Covalently-bonded quaternized activated carbon for selective removal of NO 3 - in capacitive deionization[J]. Chemical Engineering Journal, 2021, 425: 130573. |
| [58] | TSAI Shao-Wei, HACKL Lukas, KUMAR Arkadeep, et al. Exploring the electrosorption selectivity of nitrate over chloride in capacitive deionization (CDI) and membrane capacitive deionization (MCDI)[J]. Desalination, 2021, 497: 114764. |
| [59] | XU Bin, XU Xueting, GAO Hailing, et al. Electro-enhanced adsorption of ammonium ions by effective graphene-based electrode in capacitive deionization[J]. Separation and Purification Technology, 2020, 250: 117243. |
| [60] | FANG Kuo, HE Wenyan, PENG Fei, et al. Ammonia recovery from concentrated solution by designing novel stacked FCDI cell[J]. Separation and Purification Technology, 2020, 250: 117066. |
| [61] | 刘畅. 基于电容去离子技术的脱硫废水除盐机理与实验研究[D]. 北京: 华北电力大学, 2022. |
| LIU Chang. Mechanism and experimental study on desalination of desulfurization wastewater based on capacitive deionization technology[D]. Beijing: North China Electric Power University, 2022. | |
| [62] | FENG Xiujuan, ZOU Yanjun, CONDÉ Sékou Mohamed, et al. Research on CeO2 activated carbon electrode capacitance method for sulfate removal from mine water[J]. Water, 2024, 16(5): 675. |
| [63] | 李红彦, 谢书涵, 张燕如, 等. 废旧锂离子电池正极材料直接再生技术研究进展[J]. 化工进展, 2024, 43(9): 5207-5216. |
| LI Hongyan, XIE Shuhan, ZHANG Yanru, et al. Research progress on the direct regeneration technology for cathode materials from spent lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5207-5216. | |
| [64] | 路青强, 陈琳琳, 巢艳红, 等. 钛系锂离子筛用于盐湖提锂的研究进展[J]. 化工进展, 2021, 40(S1): 1-12. |
| LU Qingqiang, CHEN Linlin, CHAO Yanhong, et al. Research progress of titanium-based lithium ion sieve for extracting lithium from salt lake brine[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 1-12. | |
| [65] | 靳军宝, 郑玉荣, 吴新年, 等. 盐湖提锂关键技术发展态势研究[J]. 现代化工, 2024, 44(4): 6-12, 18. |
| JIN Junbao, ZHENG Yurong, WU Xinnian, et al. Study on development situation of key technology for lithium extraction from salt lake[J]. Modern Chemical Industry, 2024, 44(4): 6-12, 18. | |
| [66] | ZHOU Jianguo, XIANG Shuhong, WANG Xinyu, et al. Highly selective lithium extraction from salt lake via carbon-coated lithium vanadium phosphate capacitive electrode[J]. Chemical Engineering Journal, 2024, 482: 148985. |
| [67] | 吴青芸, 黄畅, 李佳稳, 等. 面向染料废水处理的氧化石墨烯复合纳滤膜研究进展[J]. 水处理技术, 2024, 50(9): 13-19. |
| WU Qingyun, HUANG Chang, LI Jiawen, et al. Research progress of graphene oxide composite nanofiltration membrane for dye wastewater treatment[J]. Technology of Water Treatment, 2024, 50(9): 13-19. | |
| [68] | 张明铝, 吴华城, 吴佳霓, 等. 高电压正极材料镍锰酸锂的改性研究进展[J]. 化工新型材料, 2024, 52(5): 1-4. |
| ZHANG Minglyu, WU Huacheng, WU Jiani, et al. Research progress on modification of high-voltage cathode material lithium nickel manganese oxide[J]. New Chemical Materials, 2024, 52(5): 1-4. | |
| [69] | 万茂华, 张小红, 安兴业, 等. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
| WAN Maohua, ZHANG Xiaohong, AN Xingye, et al. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. | |
| [70] | HU Bin, WANG Yiwen, ZHANG Boshuang, et al. GO-encapsulated La-doped lithium manganese oxide assemblies to enhance lithium extraction performance in capacitive deionization[J]. Separation and Purification Technology, 2024, 348: 127693. |
| [71] | HU Bin, SHANG Xiaohong, NIE Pengfei, et al. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization[J]. Journal of Colloid and Interface Science, 2022, 612: 392-400. |
| [72] | 伊跃军, 张秀峰, 张利珍, 等. 中国钾盐资源开发利用现状及建议[J]. 无机盐工业, 2024, 56(10): 12-19. |
| YI Yuejun, ZHANG Xiufeng, ZHANG Lizhen, et al. Present situation and suggestions on exploitation and utilization of potassium salt resources in China[J]. Inorganic Chemicals Industry, 2024, 56(10): 12-19. | |
| [73] | SHI Wenhui, LIU Xiaoyue, YE Chenzeng, et al. Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane[J]. Separation and Purification Technology, 2019, 210: 885-890. |
| [74] | LEE Dong-Hee, Taegong RYU, SHIN Junho, et al. Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system[J]. Hydrometallurgy, 2017, 173: 283-288. |
| [75] | SIEKIERKA Anna, TOMASZEWSKA Barbara, BRYJAK Marek. Lithium capturing from geothermal water by hybrid capacitive deionization[J]. Desalination, 2018, 436: 8-14. |
| [76] | SIEKIERKA Anna. Lithium and magnesium separation from brines by hybrid capacitive deionization[J]. Desalination, 2022, 527: 115569. |
| [77] | SIEKIERKA Anna, BRYJAK Marek. Selective sorbents for recovery of lithium ions by hybrid capacitive deionization[J]. Desalination, 2021, 520: 115324. |
| [78] | XIE Ning, LI Yaqian, YUAN Yijin, et al. Fabricating a flow-through hybrid capacitive deionization cell for selective recovery of lithium ions[J]. ACS Applied Energy Materials, 2021, 4(11): 13036-13043. |
| [79] | LIANG Shuai, LI Min, CAO Jun, et al. Integrated ultrafiltration–capacitive-deionization (UCDI) for enhanced antifouling performance and synchronous removal of organic matter and salts[J]. Separation and Purification Technology, 2019, 226: 146-153. |
| [80] | MAHESHWARI Karishma, GUPTA A B, GUPTA Ragini, et al. Desalinating RO retentate employing NF coupled with CDI: A path towards cleaner production[J]. Journal of Cleaner Production, 2023, 395: 136405. |
| [81] | EBRAHIMIAN MASHHADI Mojtaba, MOZAFFARIAN Mehrdad, MOHSENI Madjid, et al. Evaluation of synergistic effects of coupling capacitive deionization (CDI) and UV oxidation processes for saline water treatment[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106909. |
| [82] | CEN Benqiang, LI Kexun, Cuicui LYU, et al. A novel asymmetric activated carbon electrode doped with metal-organic frameworks for high desalination performance[J]. Journal of Solid State Electrochemistry, 2020, 24(3): 687-697. |
| [1] | BAO Xinde, LIU Biye, HUANG Renwei, HONG Yuhao, GUAN Xin, LIN Jinguo. Preparation of biomass-based@CuNiOS composite catalysts for the reduction of organic dye [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 185-196. |
| [2] | ZHANG Hanlin, YUE Xuehai, LIU Junxi, YIN Fengjun. Fabrication of high stability electrocatalyst for oxygen evolution reaction by Ru-Sr-Ir electrodeposition [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 243-251. |
| [3] | WANG Jintao, ZHANG Hongzhen, LIANG Bo. Preparation of dual superlyophobic filter paper and its separation to oil in alkaline salt water [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4006-4012. |
| [4] | ZHAO Baohua, LIU Xiaona, HU Yanyun, JIA Tiancong, XIE Qiang, HE Yan, MA Xiangshuai, MA Shuangchen. Comparison and development trend of traditional electroadsorption and flow electrode capacitive deion technology [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4101-4116. |
| [5] | CHEN Dongjian, SUN Yuqian, YIN Fengxiang. Preparation of FeNi3-Fe3O4/CN electrocatalysts and their electrocatalytic oxygen evolution performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3928-3937. |
| [6] | YU Ning, WANG Qiuyue, WANG Zhicai, GAO Ziyi, CHAI Yongming, DONG Bin. Double-sites synergistic regulation for boosting water oxidation of La1-x Ni1-y Fe y O3‑δ [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3976-3984. |
| [7] | CHEN Chongming, LI Dong, YU Jinxing, CHE Kai, HE Wei, CHEN Chuanmin. Adsorption performance of titanium based MXene aerogel for Hg(Ⅱ) in desulfurization wastewater [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3112-3120. |
| [8] | KONG Can, LIU Yuhan, SHENG Yu, LIU Fang, CHANG Huazhen. Polyaniline enhanced cuprous oxide for carbon dioxide reduction [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3144-3153. |
| [9] | LI Hongwei, XU Hanqiao, ZHAO Yan, LIU Yaozong, TENG Zhijun, JI Dong, LI Guixian. Research progress and prospect of platinum-based catalysts for electrocatalytic methanol oxidation [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3443-3456. |
| [10] | FAN Xiaoya, ZHAO Zhen, PENG Qiang. Review on electrocatalytic co-reduction of carbon dioxide and nitrate for urea synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2856-2869. |
| [11] | ZHANG Shuxi, CHEN Peiting, PU Jianbo, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Effect of air inlet on secondary particle size and electrochemical properties of silicon/carbon anode materials [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2196-2201. |
| [12] | ZHANG Xinyu, TAO Mengying, YU Xiaoting, ZHAO Zhongxing, ZHAO Zhenxia. Laccase immobilized on mesoporous metal-organic framework and its performance of reactive brilliant blue KN-R degradation [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1758-1767. |
| [13] | XIE Xinyao, WAN Fen, FU Xuanyu, FAN Yuting, CHEN Lingxiu, LI Peng. Catalytic performance and mechanism of CO2 electroreduction of Cu-Ag nanoclusters [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1387-1395. |
| [14] | ZHANG Xiaofang, GAN Wen, JI Zhijiao, XU Ming, LI Chufu, HE Guangli. Present situation and strategy of electrolytes for electrochemical nitrogen reduction to ammonia [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 809-819. |
| [15] | JIN Yuyang, NIU Chuanfeng, LIU Yingshuo, DING Shi. Graphite powder/Nafion-Pb electrode for electrocatalytic reduction of oxalic acid to glycolic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1003-1013. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |