Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6542-6551.DOI: 10.16085/j.issn.1000-6613.2024-1648
• Materials science and technology • Previous Articles
WEN Xuejun1(
), GUO Yongjun1,2,3(
), ZHANG Wei3,4, PU Di3,5, LI Huabing3,4, JIN Cheng2, LI Zhenwu1, ZHANG Xinming1,3
Received:2024-10-13
Revised:2024-11-18
Online:2025-12-08
Published:2025-11-25
Contact:
GUO Yongjun
闻学军1(
), 郭拥军1,2,3(
), 张伟3,4, 蒲迪3,5, 李华兵3,4, 金诚2, 李镇武1, 张新民1,3
通讯作者:
郭拥军
作者简介:闻学军(1999—),男,硕士研究生,研究方向为油田功能化学剂。E-mail:13890560192@163.com。
基金资助:CLC Number:
WEN Xuejun, GUO Yongjun, ZHANG Wei, PU Di, LI Huabing, JIN Cheng, LI Zhenwu, ZHANG Xinming. Influence regulation of different molecular structure relative permeability modifier on controlling water cut and stabilizing oil performance[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6542-6551.
闻学军, 郭拥军, 张伟, 蒲迪, 李华兵, 金诚, 李镇武, 张新民. 不同分子结构相对渗透率改善剂对控水稳油性能的影响规律[J]. 化工进展, 2025, 44(11): 6542-6551.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1648
| 模拟地层盐水离子含量/mg·L-1 | 总矿化度/mg·L-1 | ||||||
|---|---|---|---|---|---|---|---|
| K++Na+ | Ca2+ | Mg2+ | Cl- | CO | HCO3- | SO | |
| 8622.07 | 21.41 | 6.11 | 11333.50 | 185.72 | 3169.88 | 35.66 | 23374.35 |
| 模拟地层盐水离子含量/mg·L-1 | 总矿化度/mg·L-1 | ||||||
|---|---|---|---|---|---|---|---|
| K++Na+ | Ca2+ | Mg2+ | Cl- | CO | HCO3- | SO | |
| 8622.07 | 21.41 | 6.11 | 11333.50 | 185.72 | 3169.88 | 35.66 | 23374.35 |
| 注入性能分级 | 增长率λ |
|---|---|
| 一(优秀) | 0~0.5 |
| 二(较好) | 0.5~1.0 |
| 三(良) | 1.0~1.5 |
| 四(差) | >1.5 |
| 注入性能分级 | 增长率λ |
|---|---|
| 一(优秀) | 0~0.5 |
| 二(较好) | 0.5~1.0 |
| 三(良) | 1.0~1.5 |
| 四(差) | >1.5 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 堵水率/% | 堵油率/% | 水油封堵率比值 |
|---|---|---|---|---|---|---|---|
| A0.5B0-500 | 37.24 | 211 | 12.51 | 4.93 | 96.66 | 52.97 | 1.82 |
| A0.75B0-500 | 37.73 | 223 | 12.33 | 4.88 | 96.04 | 53.52 | 1.79 |
| A1.5B0-500 | 37.45 | 206 | 6.45 | 3.21 | 92.17 | 45.30 | 2.03 |
| A2.5B0-500 | 38.88 | 192 | 6.03 | 2.38 | 86.64 | 37.14 | 2.33 |
| A3.5B0-500 | 38.18 | 204 | 5.76 | 2.07 | 84.36 | 39.34 | 2.14 |
| A5B0-500 | 37.45 | 214 | 5.59 | 1.89 | 83.86 | 41.07 | 2.04 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 堵水率/% | 堵油率/% | 水油封堵率比值 |
|---|---|---|---|---|---|---|---|
| A0.5B0-500 | 37.24 | 211 | 12.51 | 4.93 | 96.66 | 52.97 | 1.82 |
| A0.75B0-500 | 37.73 | 223 | 12.33 | 4.88 | 96.04 | 53.52 | 1.79 |
| A1.5B0-500 | 37.45 | 206 | 6.45 | 3.21 | 92.17 | 45.30 | 2.03 |
| A2.5B0-500 | 38.88 | 192 | 6.03 | 2.38 | 86.64 | 37.14 | 2.33 |
| A3.5B0-500 | 38.18 | 204 | 5.76 | 2.07 | 84.36 | 39.34 | 2.14 |
| A5B0-500 | 37.45 | 214 | 5.59 | 1.89 | 83.86 | 41.07 | 2.04 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 堵水率/% | 堵油率/% | 水油封堵率比值 |
|---|---|---|---|---|---|---|---|
| A0B0.5-500 | 38.01 | 200 | 0.66 | 0.22 | 43.30 | 20.45 | 2.12 |
| A0B0.75-500 | 35.73 | 198 | 0.73 | 0.19 | 42.03 | 27.50 | 1.53 |
| A0B1.5-500 | 38.76 | 199 | 0.75 | 0.17 | 39.02 | 27.91 | 1.40 |
| A0B2.5-500 | 39.18 | 206 | 0.76 | 0.12 | 40.98 | 28.89 | 1.42 |
| A0B3.5-500 | 38.58 | 189 | 0.77 | 0.13 | 37.78 | 29.73 | 1.27 |
| A0B5-500 | 38.88 | 187 | 0.79 | 0.10 | 41.51 | 30.00 | 1.38 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 堵水率/% | 堵油率/% | 水油封堵率比值 |
|---|---|---|---|---|---|---|---|
| A0B0.5-500 | 38.01 | 200 | 0.66 | 0.22 | 43.30 | 20.45 | 2.12 |
| A0B0.75-500 | 35.73 | 198 | 0.73 | 0.19 | 42.03 | 27.50 | 1.53 |
| A0B1.5-500 | 38.76 | 199 | 0.75 | 0.17 | 39.02 | 27.91 | 1.40 |
| A0B2.5-500 | 39.18 | 206 | 0.76 | 0.12 | 40.98 | 28.89 | 1.42 |
| A0B3.5-500 | 38.58 | 189 | 0.77 | 0.13 | 37.78 | 29.73 | 1.27 |
| A0B5-500 | 38.88 | 187 | 0.79 | 0.10 | 41.51 | 30.00 | 1.38 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 堵水率/% | 堵油率/% | 水油封堵率比值 |
|---|---|---|---|---|---|---|---|
| A0.75B0.5-500 | 36.46 | 227 | 2.88 | 1.33 | 78.52 | 29.17 | 2.69 |
| A0.75B2.5-500 | 36.47 | 196 | 1.92 | 0.27 | 64.58 | 19.05 | 3.39 |
| A1.5B0.5-500 | 35.61 | 186 | 4.92 | 1.50 | 86.12 | 42.62 | 2.02 |
| A1.5B2.5-500 | 37.18 | 193 | 1.95 | 0.33 | 69.15 | 24.39 | 2.84 |
| A3.5B0.5-500 | 37.47 | 185 | 5.28 | 1.63 | 86.78 | 43.86 | 1.98 |
| A3.5B2.5-500 | 36.38 | 175 | 2.46 | 0.38 | 70.31 | 26.67 | 2.64 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 堵水率/% | 堵油率/% | 水油封堵率比值 |
|---|---|---|---|---|---|---|---|
| A0.75B0.5-500 | 36.46 | 227 | 2.88 | 1.33 | 78.52 | 29.17 | 2.69 |
| A0.75B2.5-500 | 36.47 | 196 | 1.92 | 0.27 | 64.58 | 19.05 | 3.39 |
| A1.5B0.5-500 | 35.61 | 186 | 4.92 | 1.50 | 86.12 | 42.62 | 2.02 |
| A1.5B2.5-500 | 37.18 | 193 | 1.95 | 0.33 | 69.15 | 24.39 | 2.84 |
| A3.5B0.5-500 | 37.47 | 185 | 5.28 | 1.63 | 86.78 | 43.86 | 1.98 |
| A3.5B2.5-500 | 36.38 | 175 | 2.46 | 0.38 | 70.31 | 26.67 | 2.64 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 注入压力梯度增长率 | 堵水率/% | 堵油率/% |
|---|---|---|---|---|---|
| A0.75B0-500 | 37.73 | 223 | 4.88 | 96.04 | 53.52 |
| A0B2.5-500 | 39.18 | 206 | 0.12 | 40.98 | 28.89 |
| A0.75B2.5-500 | 36.47 | 196 | 0.27 | 64.58 | 19.05 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 注入压力梯度增长率 | 堵水率/% | 堵油率/% |
|---|---|---|---|---|---|
| A0.75B0-500 | 37.73 | 223 | 4.88 | 96.04 | 53.52 |
| A0B2.5-500 | 39.18 | 206 | 0.12 | 40.98 | 28.89 |
| A0.75B2.5-500 | 36.47 | 196 | 0.27 | 64.58 | 19.05 |
| 分子量 | 渗透率200mD | 渗透率500mD | 渗透率1000mD | |||
|---|---|---|---|---|---|---|
| 注入压力梯度增长率 | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 注入压力梯度/MPa·m-1 | |
| 300×104 | 0.07 | 0.78 | 0.11 | 0.44 | 0.09 | 0.25 |
| 500×104 | 0.33 | 1.95 | 0.24 | 1.15 | 0.16 | 0.36 |
| 700×104 | 0.38 | 2.15 | 0.32 | 1.39 | 0.21 | 0.42 |
| 分子量 | 渗透率200mD | 渗透率500mD | 渗透率1000mD | |||
|---|---|---|---|---|---|---|
| 注入压力梯度增长率 | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 注入压力梯度/MPa·m-1 | 注入压力梯度增长率 | 注入压力梯度/MPa·m-1 | |
| 300×104 | 0.07 | 0.78 | 0.11 | 0.44 | 0.09 | 0.25 |
| 500×104 | 0.33 | 1.95 | 0.24 | 1.15 | 0.16 | 0.36 |
| 700×104 | 0.38 | 2.15 | 0.32 | 1.39 | 0.21 | 0.42 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 孔隙半径/μm | 堵水率/% | 堵油率/% | 水油封堵率比值 |
|---|---|---|---|---|---|---|
| A0.75B2.5-300 | 37.17 | 254 | 2.30 | 20.00 | -3.23 | -6.19 |
| 38.58 | 528 | 3.37 | 24.14 | -5.88 | -4.11 | |
| 34.88 | 1126 | 5.08 | 12.50 | -7.14 | -1.75 | |
| A0.75B2.5-500 | 36.47 | 196 | 2.01 | 64.58 | 19.05 | 3.39 |
| 36.54 | 559 | 3.50 | 70.27 | 14.29 | 4.92 | |
| 36.64 | 958 | 4.64 | 27.27 | -11.11 | -2.45 | |
| A0.75B2.5-700 | 36.89 | 214 | 2.13 | 68.42 | 20.00 | 3.42 |
| 37.51 | 546 | 3.45 | 71.15 | 15.07 | 4.72 | |
| 37.22 | 1095 | 4.94 | 30.43 | 5.26 | 5.79 |
| 聚合物编号 | 孔隙度/% | 渗透率/mD | 孔隙半径/μm | 堵水率/% | 堵油率/% | 水油封堵率比值 |
|---|---|---|---|---|---|---|
| A0.75B2.5-300 | 37.17 | 254 | 2.30 | 20.00 | -3.23 | -6.19 |
| 38.58 | 528 | 3.37 | 24.14 | -5.88 | -4.11 | |
| 34.88 | 1126 | 5.08 | 12.50 | -7.14 | -1.75 | |
| A0.75B2.5-500 | 36.47 | 196 | 2.01 | 64.58 | 19.05 | 3.39 |
| 36.54 | 559 | 3.50 | 70.27 | 14.29 | 4.92 | |
| 36.64 | 958 | 4.64 | 27.27 | -11.11 | -2.45 | |
| A0.75B2.5-700 | 36.89 | 214 | 2.13 | 68.42 | 20.00 | 3.42 |
| 37.51 | 546 | 3.45 | 71.15 | 15.07 | 4.72 | |
| 37.22 | 1095 | 4.94 | 30.43 | 5.26 | 5.79 |
| [1] | 陈洪才, 王昭凯, 金忠康, 等. 中低渗砂岩油藏水驱后期油藏再评价及提高采收率对策[J]. 特种油气藏, 2024, 31(4): 133-141. |
| CHEN Hongcai, WANG Zhaokai, JIN Zhongkang, et al. Re-evaluation of medium-low permeability sandstone reservoirs in the later stage of water flooding and strategies to improve recovery efficiency[J]. Special Oil & Gas Reservoirs, 2024, 31(4): 133-141. | |
| [2] | YANG Yu, DENG Yonghong, TONG Zhen, et al. Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents[J]. Journal of Materials Chemistry A, 2014, 2(26): 9994-9999. |
| [3] | PARK Hyungmin, SUN Guangyi, KIM Chang-Jin. Superhydrophobic turbulent drag reduction as a function of surface grating parameters[J]. Journal of Fluid Mechanics, 2014, 747: 722-734. |
| [4] | 莘怡成, 汪华珍, 高彦才, 等. 海上机械控水完井技术应用现状及发展趋势[J]. 石油矿场机械, 2024, 53(3): 76-81. |
| XIN Yicheng, WANG Huazhen, GAO Yancai, et al. Application and development trend of offshore mechanical water-controlled completion technology[J]. Oil Field Equipment, 2024, 53(3): 76-81. | |
| [5] | MENG Haifeng, WANG Shutao, XI Jinming, et al. Facile means of preparing superamphiphobic surfaces on common engineering metals[J]. The Journal of Physical Chemistry C, 2008, 112(30): 11454-11458. |
| [6] | 潘豪. 海上油田水平井稳油控水技术现状与发展趋势[J]. 石油矿场机械, 2020, 49(3): 86-93. |
| PAN Hao. Status and development trend of horizontal well water-control completion technology for offshore oilfield[J]. Oil Field Equipment, 2020, 49(3): 86-93. | |
| [7] | LAU Kenneth K S, BICO José, Kenneth B K TEO, et al. Superhydrophobic carbon nanotube forests[J]. Nano Letters, 2003, 3(12): 1701-1705. |
| [8] | TABAEH HAYAVI Mohammad, KALANTARIASL Azim, Reza MALAYERI M. Application of polymeric relative permeability modifiers for water control purposes: Opportunities and challenges[J]. Geoenergy Science and Engineering, 2023, 231: 212330. |
| [9] | SERIGHT Randy, BRATTEKAS Bergit. Water shutoff and conformance improvement: An introduction[J]. Petroleum Science, 2021, 18(2): 450-478. |
| [10] | SANDIFORD B B. Laboratory and field studies of water floods using polymer solutions to increase oil recoveries[J]. Journal of Petroleum Technology, 1964, 16(8): 917-922. |
| [11] | 刘建新, 张营华, 任韶然. 新型相对渗透率改善剂控水性能试验研究[J]. 石油天然气学报, 2008, 30(5): 140-142, 148, 382. |
| LIU Jianxin, ZHANG Yinghua, REN Shaoran. Laboratory study on new relative permeability modifier for water control[J]. Journal of Oil and Gas Technology, 2008, 30(5): 140-142, 148, 382. | |
| [12] | 翟恒来, 齐宁, 樊家铖, 等. 油田相对渗透率改善体系研究进展[J]. 油田化学, 2018, 35(2): 375-380. |
| ZHAI Henglai, QI Ning, FAN Jiacheng, et al. Research progress of relative permeability modifiers system used in oilfield[J]. Oilfield Chemistry, 2018, 35(2): 375-380. | |
| [13] | WHITE J L, GODDARD J E, PHILLIPS H M. Use of polymers to control water production in oil wells[J]. Journal of Petroleum Technology, 1973, 25(2): 143-150. |
| [14] | 梁海滨. 低渗砂岩中高含水油层控水压裂技术研究[D]. 北京: 中国石油大学(北京), 2019. |
| LIANG Haibin. Study on water control fracturing technology for medium and high water cut reservoirs in low permeability sandstone[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| [15] | CHEN Tielong, ZHAO Yong, PENG Kezong, et al. A relative permeability modifier for water control of gas wells in a low-permeability reservoir[J]. SPE Reservoir Engineering, 1996, 11(3): 168-173. |
| [16] | Ibrahim AL-HULAIL, SHAKEEL Muzzammil, BINGHANIM Ahmed, et al. Water control in high-water-cut oil wells using relative permeability modifiers: A Saudi lab study[C]//SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Dammam, Saudi Arabia: SPE, 2017: D043S042R001. |
| [17] | Faaiz AL-SHAJALEE, WOOD Colin, XIE Quan, et al. Effective mechanisms to relate initial rock permeability to outcome of relative permeability modification[J]. Energies, 2019, 12(24): 4688. |
| [18] | Faaiz AL-SHAJALEE, SEYYEDI Mojtaba, VERRALL Michael, et al. Impact of prolonged water-gas flow on the performance of polyacrylamide[J]. Journal of Applied Polymer Science, 2022, 139(17): 52037. |
| [19] | LI Xu, WANG Xiaopeng, PU Chunsheng, et al. Effect of a hydrophobically associating polymer on disproportionate permeability reduction to oil and water for sandstone reservoirs[J]. Desalination and Water Treatment, 2023, 293: 276-285. |
| [20] | DALRYMPLE E D, EOFF L, REDDY B R, et al. Studies of a relative permeability modifier treatment performed using multitap flow cells[C]//SPE/DOE Improved Oil Recovery Symposium. Tulsa, Oklahoma: SPE, 2000: SPE-59346-MS. |
| [21] | 刘新荣, 韩松, 李庆松. 相渗透率改善剂对岩石润湿性的影响[J]. 东北林业大学学报, 2009, 37(6): 115-116. |
| LIU Xinrong, HAN Song, LI Qingsong. Effect of relative permeability modifier on rock wettability[J]. Journal of Northeast Forestry University, 2009, 37(6): 115-116. | |
| [22] | ZALTOUN Alain, KOHLER Norbert, GUERRINL Yannick. Improved polyacrylamide treatments for water control in producing wells[J]. Journal of Petroleum Technology, 1991, 43(7): 862-867. |
| [23] | 李志臻, 史斌, 麻路, 等. 一种溶液型选择性堵水体系的室内研究及应用[J]. 石油化工应用, 2020, 39(1): 53-61. |
| LI Zhizhen, SHI Bin, MA Lu, et al. Research and application of a solution type water shutoff system[J]. Petrochemical Industry Application, 2020, 39(1): 53-61. | |
| [24] | WANG Jun, ZHANG Na, LI Cuiqin, et al. Synthesis and characterization of a novel hydrophobically associating relative permeability modifier[J]. Journal of Macromolecular Science, Part A, 2013, 50(1): 29-35. |
| [25] | 龙长俊, 周劲辉, 李玉涛, 等. 一种新型相渗透率改善剂体系性能评价与应用[J]. 石油钻采工艺, 2020, 42(6): 757-761, 796. |
| LONG Changjun, ZHOU Jinhui, LI Yutao, et al. Evaluation and application of a new type of relative permeability modifier system[J]. Oil Drilling & Production Technology, 2020, 42(6): 757-761, 796. | |
| [26] | 刘建新. 相对渗透率改善剂的研究与应用[D]. 青岛: 中国石油大学(华东), 2009. |
| LIU Jianxin. Research and application of relative permeability improver[D]. Qingdao: China University of Petroleum (East China), 2009. | |
| [27] | 张娜. 疏水缔合型相渗透率改善剂的结构与性能的关系[D]. 大庆: 东北石油大学, 2013. |
| ZHANG Na. Relationship between structure and properties of hydrophobically associated phase permeability improver[D]. Daqing: Northeast Petroleum University, 2013. | |
| [28] | Faaiz AL-SHAJALEE, SAEEDI Ali, WOOD Colin. A new dimensionless approach to assess relative permeability modifiers[J]. Energy & Fuels, 2019, 33(4): 3448-3455. |
| [29] | YANG Chao, NAVARRETE Reinaldo, ASADI Mahmoud. A novel relative permeability modifier polymer[C]//SPE International Conference and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA: SPE, 2020: D011S006R006. |
| [30] | ZAITOUN A, KOHLER N. Two-phase flow through porous media: Effect of an adsorbed polymer layer[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas: SPE, 1988: SPE-18085-MS. |
| [31] | Faaiz AL-SHAJALEE, ARIF Muhammad, MACHALE Jinesh, et al. A multiscale investigation of cross-linked polymer gel injection in sandstone gas reservoirs: Implications for water shutoff treatment[J]. Energy & Fuels, 2020, 34(11): 14046-14057. |
| [32] | 李浩, 杨海洋, 朱平平, 等. 利用Poiseuille方程确定聚乙烯醇在粘度计毛细管管壁上吸附层的厚度[J]. 功能高分子学报, 2002, 15(3): 319-324. |
| LI Hao, YANG Haiyang, ZHU Pingping, et al. Thickness of the polyvinyl alcohol layers adsorbed on the wall of viscometer capillary determined according to Poiseuille equation[J]. Journal of Functional Polymers, 2002, 15(3): 319-324. | |
| [33] | Faaiz AL-SHAJALEE, ARIF Muhammad, SARI Ahmed, et al. Low-salinity-assisted cationic polyacrylamide water shutoff in low-permeability sandstone gas reservoirs[J]. Energy & Fuels, 2020, 34(5): 5524-5536. |
| [34] | EOFF Larry, DALRYMPLE E, REDDY B R, et al. Structure and process optimization for the use of a polymeric relative-permeability modifier in conformance control[C]//Proceedings of SPE International Symposium on Oilfield Chemistry. Houston, Texas: SPE, 2001: SPE-64985-MS. |
| [35] | 罗明良, 孙涛, 温庆志, 等. 低渗透油藏RPM控水压裂液性能评价与应用[J]. 西安石油大学学报(自然科学版), 2016, 31(3): 74-80, 85. |
| LUO Mingliang, SUN Tao, WEN Qingzhi, et al. Performance evaluation and application of RPM water control fracturing fluid for low permeability oil reservoirs[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2016, 31(3): 74-80, 85. | |
| [36] | Ahmed ALI, YASSINE Rami, WAHEED Arshad, et al. Relative permeability modifier fracturing technique inhibits post-fracturing water production: Case histories from Egypt[C]//North Africa Technical Conference and Exhibition. Cairo, Egypt: SPE, 2010: SPE-128322-MS. |
| [37] | 董海斌. 溶液型阳离子选择堵水剂的制备及性能研究[D]. 成都: 西南石油大学, 2019. |
| DONG Haibing. Preparation and performance study of solution type cationic selective water blocking agent[D]. Chengdu: Southwest Petroleum University, 2019. | |
| [38] | GRATTONI C A, LUCKHAM P F, JING X D, et al. Polymers as relative permeability modifiers: Adsorption and the dynamic formation of thick polyacrylamide layers[J]. Journal of Petroleum Science and Engineering, 2004, 45(3/4): 233-245. |
| [39] | 朱怀江, 刘强, 沈平平, 等. 聚合物分子尺寸与油藏孔喉的配伍性[J]. 石油勘探与开发, 2006, 33(5): 609-613. |
| ZHU Huaijiang, LIU Qiang, SHEN Pingping, et al. Compatibility between polymer molecular size and pore throat in reservoirs[J]. Petroleum Exploration and Development, 2006, 33(5): 609-613. | |
| [40] | QIN Liming, MYERS Matthew B, OTTO Claus, et al. Further insights into the performance of silylated polyacrylamide-based relative permeability modifiers in carbonate reservoirs and influencing factors[J]. ACS Omega, 2021, 6(21): 13671-13683. |
| [41] | PARKHONYUK Sergey, LEVANYUK Olesya, OPARIN Maxim, et al. Implementation of relative permeability modifiers in krasnoleninskoe oil field: Case histories[C]//SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, USA: SPE, 2012 SPE-152410-MS. |
| [1] | WU Jinyi, ZHAO Ruikai, DENG Shuai, ZHANG Jiaqi, GAO Chunxiao, LIU Weihua, ZHAO Li. Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 19-28. |
| [2] | ZHAO Yulong, CAI Kai, YU Shanqing. Influence of pore structure of alumina on the adsorption, diffusion and reactivity of hydrocarbon molecules in catalytic cracking [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 213-221. |
| [3] | YUAN Xiaoliang, ZHANG Xinyue, LI Tianshu, ZHANG Tianqi, WANG Dongqing. Analysis of the patent technology landscape of cycloolefin polymers [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 252-260. |
| [4] | FU Hongmei, LIU Dinghua, LIU Xiaoqin. Research progress on the separation of aromatic isomers using MOF materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5006-5017. |
| [5] | ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032. |
| [6] | ZHANG Bo, MA Jun, ZHANG Weilong, JIA Shichuan, ZHANG Zhifei, DING Yu, PAN Youhua, WANG Junyu, ZHANG Lanhe. Preparation of α-ZrP/PDMS superhydrophobic anti-corrosion coating and corrosion resistance performance [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5130-5139. |
| [7] | WANG Jin, HE Xiaorui, JIANG Zhuangzhuang, FENG Yong, LIU Cheng, SHEN Xinghan. Theoretical calculations and experiments on gas permeability of proton exchange membranes for automotive fuel cells [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5202-5210. |
| [8] | YANG Yong, ZHANG Zhao, WANG Dongliang, ZHOU Huairong, ZHAO Zihao, LI Yukun. Technical-economic evaluation for different separation strategies of xylene isomers [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4732-4740. |
| [9] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| [10] | LIANG Shuwei, YU Jie, XIE Zhongyin, PEI Jianlu, LIN Zhongxin, CHEN Zexiang. Covalent organic frameworks for radioactive gaseous iodine adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3965-3975. |
| [11] | WANG Ying, TANG Mengfei, WANG Ying, ZHANG Chuanfang, ZHANG Guojie, LIU Jun, ZHAO Yuqiong. Preparation of CNT composites from coal pyrolysis catalyzed by different alkali metals for adsorption of Rhodamine B [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3985-3996. |
| [12] | ZHAO Baohua, LIU Xiaona, HU Yanyun, JIA Tiancong, XIE Qiang, HE Yan, MA Xiangshuai, MA Shuangchen. Comparison and development trend of traditional electroadsorption and flow electrode capacitive deion technology [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4101-4116. |
| [13] | YE Xiaosheng, YUAN Ting, JIA Xin, REN Qingxia. Research progress on the removal of microcystin-LR by multicomponent composite nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4144-4157. |
| [14] | CHEN Qian, TONG Kun, XIE Jiacai, SHAO Zhiguo, NIE Fan, LI Chentao. Research progress on the treatment technology of polymer-containing oil sludge [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4158-4168. |
| [15] | MI Yifang, WANG Baoguo, WANG Wenqiang, SUN Guojin, CAO Zhihai. Preparation of nitrogen self-doped cyanobacterial biomass-based activated carbon for CO2 adsorption [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4223-4232. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |