Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2258-2273.DOI: 10.16085/j.issn.1000-6613.2024-0501

• Resources and environmental engineering • Previous Articles     Next Articles

Research progress on iron-based composite bismuth oxyhalide magnetic materials for enhanced visible light catalytic treatment of refractory organic wastewater

ZHANG Yiru1(), HAN Dongmei2, MA Weifang1()   

  1. 1.College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
    2.Beijing Energy Conservation and Environmental Protection Center, Beijing 100029, China
  • Received:2024-03-27 Revised:2024-05-25 Online:2025-05-07 Published:2025-04-25
  • Contact: MA Weifang

铁基复合卤氧化铋磁性材料强化可见光催化处理难降解有机废水研究进展

张绎如1(), 韩东梅2, 马伟芳1()   

  1. 1.北京林业大学环境科学与工程学院,北京 100083
    2.北京节能环保中心,北京 100029
  • 通讯作者: 马伟芳
  • 作者简介:张绎如(2001—),女,硕士研究生,研究方向为光催化。E-mail:3607612564@qq.com
  • 基金资助:
    北京市科技计划(Z141100000914009)

Abstract:

Visible light catalytic oxidation is an efficient, energy-saving and environmentally friendly refractory organic wastewater treatment technology. The key to the efficiency of wastewater purification is the performance of the catalyst. Bismuth oxyhalide (BiOX, X=Br, Cl, I), as a bismuth-based semiconductor material, has the characteristics of suitable band gap, high stability and low toxicity. This is because the [Bi2O2]2+ plate and the double halogen atom layer are interlaced to form a four-fold perovskite structure. This special layered structure and broadened energy band structure greatly reduce the recombination of photogenerated electron-hole pairs, but the disadvantages of low quantum efficiency, wide band gap, and difficulty in recycling limit its scale application. Iron-based materials have excellent optical properties and play a role of activating oxidant, and are usually magnetic. The combination of the bismuth oxyhalide and iron-based materials can solve the problem of difficult recovery of bismuth oxyhalide and improve the photocatalytic performance. Therefore, this paper reviewed the types, synthesis methods, catalytic performance and reusability of magnetic materials from bismuth oxyhalide to different iron-based composite bismuth oxyhalide magnetic materials, in order to provide reference for improving the recovery efficiency, reusability and photocatalytic performance of photocatalytic materials. It was expected that the removal efficiency of refractory organic pollutants could reach 80%—100% in the practical engineering application of iron-based composite bismuth oxyhalide magnetic catalyst. In the future, the key to the application of iron-based composite bismuth oxyhalide magnetic materials in printing and dyeing wastewater, pharmaceutical wastewater and organic chemical wastewater was to reduce the cost of materials, innovate modification methods, and put them into practical engineering on a large scale, so as to improve their cost performance and practicability.

Key words: photochemistry, catalyst, degradation, photocatalytic efficiency, material modification, refractory organic wastewater

摘要:

可见光催化氧化是一种高效、节能、环境友好的难降解有机废水处理技术,其净化废水效能的关键是催化剂性能。卤氧化铋(BiOX,X=Br、Cl、I)作为铋基半导体材料,具有带隙适宜、稳定性高和毒性低等特征,这是由于[Bi2O2]2+平板和双卤素原子层交错形成了四重钙钛矿结构。这种特殊的层状和拓宽能带结构,大大减少了光生电子-空穴对的复合,但量子效率低、带隙宽、难以回收循环利用等缺点限制了其规模性应用。铁基材料有着出色的光学性质和活化氧化剂的作用,通常具有磁性。两者复合后可解决卤氧化铋难回收问题,并提升其光催化性能,因此本文梳理了从卤氧化铋到不同的铁基复合卤氧化铋磁性材料的种类、合成方法、催化性能与重复可利用性,以期为提高光催化材料回收效率、可重复利用性和光催化性能提供参考。期望铁基复合卤氧化铋磁性催化剂在实际工程应用中,可以实现难降解有机污染物去除率80%~100%。未来铁基复合卤氧化铋磁性材料在印染废水、制药废水、有机化工废水中应用的关键是降低材料成本、创新改性方法、大规模投入实际工程等,提高其性价比与实用性。

关键词: 光化学, 催化剂, 降解, 光催化效率, 材料改性, 难降解有机废水

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd