Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 6933-6943.DOI: 10.16085/j.issn.1000-6613.2023-2131
• Resources and environmental engineering • Previous Articles
YANG Shuangxia(
), HOU Jianjun, LI Tianjin, CHEN Lei, SUN Laizhi, HUA Dongliang
Received:2023-12-01
Revised:2024-02-29
Online:2025-01-11
Published:2024-12-15
Contact:
YANG Shuangxia
通讯作者:
杨双霞
作者简介:杨双霞(1987—),女,博士,副研究员,研究方向为低质碳资源高值化利用。E-mail: yangshx@sderi.cn。
基金资助:CLC Number:
YANG Shuangxia, HOU Jianjun, LI Tianjin, CHEN Lei, SUN Laizhi, HUA Dongliang. Current research and prospect for pyrolysis treatment of antibiotic mycelial residue[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6933-6943.
杨双霞, 侯建军, 李天津, 陈雷, 孙来芝, 华栋梁. 抗生素菌渣热解技术研究现状及展望[J]. 化工进展, 2024, 43(12): 6933-6943.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2131
| 抗生素菌渣种类 | 工业分析/% | 元素分析/% | ||||||
|---|---|---|---|---|---|---|---|---|
| 挥发分V | 灰分A | 固定碳FC | C | H | O | N | S | |
| 链霉素 | 85.15 | 13.07 | 1.78 | 38.02 | 5.88 | 38.29 | 5.31 | 0.27 |
| 杆菌肽 | 90.77 | 7.02 | 2.21 | 44.17 | 6.67 | 31.78 | 6.37 | 0.57 |
| 林可霉素 | 86.61 | 10.24 | 3.15 | 42.07 | 6.30 | 33.23 | 7.94 | 0.85 |
| 青霉素 | 88.62 | 8.50 | 2.88 | 43.59 | 7.32 | 30.45 | 9.24 | 1.08 |
| 头孢菌素C | 91.63 | 6.34 | 2.03 | 48.33 | 7.43 | 28.90 | 8.47 | 1.34 |
| 土霉素 | 66.53 | 12.48 | 20.99 | 44.71 | 5.04 | 30.71 | 7.81 | 0.51 |
| 水稻秸秆 | 76.84 | 13.07 | 10.06 | 40.06 | 5.47 | 40.23 | 0.69 | 0.48 |
| 小麦秸秆 | 80.70 | 9.37 | 9.93 | 42.95 | 5.64 | 40.51 | 0.76 | 0.78 |
| 玉米秸秆 | 82.21 | 8.86 | 8.93 | 43.28 | 5.92 | 39.32 | 1.96 | 0.66 |
| 棉花秸秆 | 82.38 | 7.45 | 10.17 | 43.95 | 5.81 | 41.12 | 1.12 | 0.56 |
| 猪粪 | 61.78 | 21.63 | 16.59 | 40.07 | 5.35 | 37.26 | 2.51 | 0.74 |
| 牛粪 | 67.26 | 20.61 | 12.13 | 39.98 | 5.38 | 35.42 | 2.53 | 0.55 |
| 鸡粪 | 61.44 | 34.02 | 4.54 | 33.85 | 4.74 | 34.39 | 2.41 | 0.52 |
| 抗生素菌渣种类 | 工业分析/% | 元素分析/% | ||||||
|---|---|---|---|---|---|---|---|---|
| 挥发分V | 灰分A | 固定碳FC | C | H | O | N | S | |
| 链霉素 | 85.15 | 13.07 | 1.78 | 38.02 | 5.88 | 38.29 | 5.31 | 0.27 |
| 杆菌肽 | 90.77 | 7.02 | 2.21 | 44.17 | 6.67 | 31.78 | 6.37 | 0.57 |
| 林可霉素 | 86.61 | 10.24 | 3.15 | 42.07 | 6.30 | 33.23 | 7.94 | 0.85 |
| 青霉素 | 88.62 | 8.50 | 2.88 | 43.59 | 7.32 | 30.45 | 9.24 | 1.08 |
| 头孢菌素C | 91.63 | 6.34 | 2.03 | 48.33 | 7.43 | 28.90 | 8.47 | 1.34 |
| 土霉素 | 66.53 | 12.48 | 20.99 | 44.71 | 5.04 | 30.71 | 7.81 | 0.51 |
| 水稻秸秆 | 76.84 | 13.07 | 10.06 | 40.06 | 5.47 | 40.23 | 0.69 | 0.48 |
| 小麦秸秆 | 80.70 | 9.37 | 9.93 | 42.95 | 5.64 | 40.51 | 0.76 | 0.78 |
| 玉米秸秆 | 82.21 | 8.86 | 8.93 | 43.28 | 5.92 | 39.32 | 1.96 | 0.66 |
| 棉花秸秆 | 82.38 | 7.45 | 10.17 | 43.95 | 5.81 | 41.12 | 1.12 | 0.56 |
| 猪粪 | 61.78 | 21.63 | 16.59 | 40.07 | 5.35 | 37.26 | 2.51 | 0.74 |
| 牛粪 | 67.26 | 20.61 | 12.13 | 39.98 | 5.38 | 35.42 | 2.53 | 0.55 |
| 鸡粪 | 61.44 | 34.02 | 4.54 | 33.85 | 4.74 | 34.39 | 2.41 | 0.52 |
| 处理技术 | 优点 | 缺点 | 参考文献 |
|---|---|---|---|
| 焚烧 | 减量化效果明显,完全消除抗生素及抗性基因的安全隐患 | 二 英、NO x 等污染物的二次污染,较高的处置成本 | [ |
| 安全填埋 | 快速处理抗生素菌渣,成本低 | 占用大量的土地资源,时间周期长,污染物易外泄 | [ |
| 好氧堆肥 | 提高土壤肥力,有利于资源化处理 | 易造成环境中抗生素和抗生素耐药性基因的富集 | [ |
| 厌氧发酵 | 可降解抗生素,生产高品质沼气 | 不能完全消除抗生素和抗性基因;处理时间较长, 运行成本偏高 | [ |
| 水热 | 无需脱水处理,有效去除抗生素,资源化利用效果显著 | 反应条件严苛,较高的设备要求 | [ |
| 热解 | 完全消除抗生素及抗性基因,污染物排放量小,减量化、 资源化效果明显 | 预处理能耗大,产物需经净化提质后应用 | [ |
| 处理技术 | 优点 | 缺点 | 参考文献 |
|---|---|---|---|
| 焚烧 | 减量化效果明显,完全消除抗生素及抗性基因的安全隐患 | 二 英、NO x 等污染物的二次污染,较高的处置成本 | [ |
| 安全填埋 | 快速处理抗生素菌渣,成本低 | 占用大量的土地资源,时间周期长,污染物易外泄 | [ |
| 好氧堆肥 | 提高土壤肥力,有利于资源化处理 | 易造成环境中抗生素和抗生素耐药性基因的富集 | [ |
| 厌氧发酵 | 可降解抗生素,生产高品质沼气 | 不能完全消除抗生素和抗性基因;处理时间较长, 运行成本偏高 | [ |
| 水热 | 无需脱水处理,有效去除抗生素,资源化利用效果显著 | 反应条件严苛,较高的设备要求 | [ |
| 热解 | 完全消除抗生素及抗性基因,污染物排放量小,减量化、 资源化效果明显 | 预处理能耗大,产物需经净化提质后应用 | [ |
| 抗生素菌渣 | 预处理方式 | 实验条件 | 结果 | 参考文献 |
|---|---|---|---|---|
| 红霉素菌渣 | γ辐照 | 23~25℃下,剂量率为240Gy/min,剂量为5kGy和10kGy | 菌渣中红霉素的含量下降86%;抗性基因ermB和ermF丰度分别下降89%和98%;细菌总数和耐药菌减少99%以上 | [ |
| 头孢菌素C菌渣 | 微波 | 微波频率为2.45GHz,反应温度为40~100℃,时间15min | 菌渣中99.9%以上头孢菌素C被降解,失去了抗菌活性 | [ |
| 青霉素菌渣 | 洗涤 | 去离子水或0.1mol/L H2SO4中连续搅拌4h | 水洗和酸洗能去除菌渣热解炭中52.51%和80.56%的灰分,有利于孔道结构的形成和吸附性能的提升,比表面积增加26.7%和66.4% | [ |
| 青霉素菌渣 | 烘焙 | 烘焙温度为200~320℃,时间为45min | 可完全消除残留抗生素,增强烘焙炭材料热稳定性, 降低H/C和O/C,提高燃料品质 | [ |
| 林可霉素菌渣 | 水热 | 反应条件为160℃,4h | 去除菌渣大部分抗性基因,同时固定部分重金属(Fe、Zn、Cr),使其以更稳定形式存在 | [ |
| 抗生素菌渣 | 预处理方式 | 实验条件 | 结果 | 参考文献 |
|---|---|---|---|---|
| 红霉素菌渣 | γ辐照 | 23~25℃下,剂量率为240Gy/min,剂量为5kGy和10kGy | 菌渣中红霉素的含量下降86%;抗性基因ermB和ermF丰度分别下降89%和98%;细菌总数和耐药菌减少99%以上 | [ |
| 头孢菌素C菌渣 | 微波 | 微波频率为2.45GHz,反应温度为40~100℃,时间15min | 菌渣中99.9%以上头孢菌素C被降解,失去了抗菌活性 | [ |
| 青霉素菌渣 | 洗涤 | 去离子水或0.1mol/L H2SO4中连续搅拌4h | 水洗和酸洗能去除菌渣热解炭中52.51%和80.56%的灰分,有利于孔道结构的形成和吸附性能的提升,比表面积增加26.7%和66.4% | [ |
| 青霉素菌渣 | 烘焙 | 烘焙温度为200~320℃,时间为45min | 可完全消除残留抗生素,增强烘焙炭材料热稳定性, 降低H/C和O/C,提高燃料品质 | [ |
| 林可霉素菌渣 | 水热 | 反应条件为160℃,4h | 去除菌渣大部分抗性基因,同时固定部分重金属(Fe、Zn、Cr),使其以更稳定形式存在 | [ |
| 1 | YANG Zhongyu, BAI Mengyuan, HAN Tong, et al. Application potential of antibiotic fermentation residue for co-combustion with coal: Thermal behavior, gaseous products, and kinetics[J]. Fuel, 2023, 335: 126953. |
| 2 | YING Guangguo, HE Liangying, YING Andrew J, et al. China must reduce its antibiotic use[J]. Environmental Science & Technology, 2017, 51(3): 1072-1073. |
| 3 | AMINOV Rustam. History of antimicrobial drug discovery: Major classes and health impact[J]. Biochemical Pharmacology, 2017, 133: 4-19. |
| 4 | TANG Zhurui, HUANG Caihong, TIAN Yu, et al. Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements[J]. Environmental Pollution, 2021, 291: 118155. |
| 5 | Yujie BEN, FU Caixia, HU Min, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review[J]. Environmental Research, 2019, 169: 483-493. |
| 6 | YIN Zhizhen. Distribution and ecological risk assessment of typical antibiotics in the surface waters of seven major rivers, China[J]. Environmental Science Processes & Impacts, 2021, 23(8): 1088-1100. |
| 7 | JIAN Zonghui, ZENG Li, XU Taojie, et al. Antibiotic resistance genes in bacteria: Occurrence, spread, and control[J]. Journal of Basic Microbiology, 2021, 61(12): 1049-1070. |
| 8 | GE Yaxin, ZHANG Guangyi, ZHANG Jianling, et al. Emission characteristics of NO x and SO2 during the combustion of antibiotic mycelial residue[J]. International Journal of Environmental Research and Public Health, 2022, 19(3): 1581. |
| 9 | WANG Gang, LIU Huiling, WANG Jing, et al. Pretreatment of spiramycin fermentation residue by thermally activated peroxydisulfate for improving biodegradability: Insights into matrix disintegration and antibiotics degradation[J]. Chemical Engineering Journal, 2022, 427: 130973. |
| 10 | 邹书娟, 王一迪, 张均雅, 等. 抗生素菌渣理化性质分析[J]. 环境科学与技术, 2018, 41(S1): 47-52. |
| ZOU Shujuan, WANG Yidi, ZHANG Junya, et al. Analysis of physicochemical properties of antibiotic residue[J]. Environmental Science & Technology, 2018, 41(S1): 47-52. | |
| 11 | 陈冠益, 刘环博, 李健, 等. 抗生素菌渣处理技术研究进展[J]. 环境化学, 2021, 40(2): 459-473. |
| CHEN Guanyi, LIU Huanbo, LI Jian, et al. Treatment of antibiotic mycelial fermentation residue: The critical review[J]. Environmental Chemistry, 2021, 40(2): 459-473. | |
| 12 | WANG Chaowei, WANG Chang’an, TANG Guantao, et al. Co-combustion behaviors and NO formation characteristics of semi-coke and antibiotic filter residue under oxy-fuel condition[J]. Fuel, 2022, 319: 123779. |
| 13 | LI Chunxing, ZHANG Guangyi, ZHANG Zhikai, et al. Hydrothermal pretreatment for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Chemical Engineering Journal, 2015, 279: 530-537. |
| 14 | YANG Shijun, ZHU Xiangdong, WANG Junsheng, et al. Combustion of hazardous biological waste derived from the fermentation of antibiotics using TG-FTIR and Py-GC/MS techniques[J]. Bioresource Technology, 2015, 193: 156-163. |
| 15 | SONG Liyan, LI Lei, YANG Shu, et al. Sulfamethoxazole, tetracycline and oxytetracycline and related antibiotic resistance genes in a large-scale landfill, China[J]. The Science of the Total Environment, 2016, 551/552: 9-15. |
| 16 | WANG Mengmeng, REN Peng, LIU Huiling, et al. Investigating antibiotics, antibiotic resistance genes in soil, groundwater and vegetables in relation to agricultural field—Applicated with lincomycin mycelial residues compost[J]. The Science of the Total Environment, 2021, 777: 146066. |
| 17 | LINS Philipp, REITSCHULER Christoph, ILLMER Paul. Impact of several antibiotics and 2-bromoethanesulfonate on the volatile fatty acid degradation, methanogenesis and community structure during thermophilic anaerobic digestion[J]. Bioresource Technology, 2015, 190: 148-158. |
| 18 | 陈丙彤, 关海滨, 张越, 等. 抗生素菌渣无害化处理技术综合探究[J]. 现代化工, 2023, 43(1): 31-36. |
| CHEN Bingtong, GUAN Haibin, ZHANG Yue, et al. Review on harmless treatment technology for antibiotic residue[J]. Modern Chemical Industry, 2023, 43(1): 31-36. | |
| 19 | 安淼, 袁国安, 夏旻. 废弃物热化学处理方法的多角度对比分析[J]. 环境与可持续发展, 2018, 43(4): 151-154. |
| AN Miao, YUAN Guo’an, XIA Min. Comparison of thermochiemical technologies for waste treatment[J]. Environment and Sustainable Development, 2018, 43(4): 151-154. | |
| 20 | 陈黎, 孔祥生, 刘秋新, 等. 妥布霉素菌渣的理化性质及危害[J]. 环境科学与技术, 2019, 42(9): 30-35. |
| CHEN Li, KONG Xiangsheng, LIU Qiuxin, et al. Physical and chemical properties and harm of tobramycin bacterial residues[J]. Environmental Science & Technology, 2019, 42(9): 30-35. | |
| 21 | WANG Qiuju, ZHANG Zhao, XU Guoren, et al. Pyrolysis of penicillin fermentation residue and sludge to produce biochar: Antibiotic resistance genes destruction and biochar application in the adsorption of penicillin in water[J]. Journal of Hazardous Materials, 2021, 413: 125385. |
| 22 | HUI Xuesong, FANG Wenjun, WANG Gang, et al. Waste recycling of antibiotic mycelial residue: The feasible harmless treatment and source control of antibiotic resistance[J]. Journal of Cleaner Production, 2023, 401: 136786. |
| 23 | 司艳晓, 胡长朝, 党伟, 等. 热解温度对青霉素菌渣热解产物的影响[J]. 化工环保, 2021, 41(2): 190-195. |
| SI Yanxiao, HU Changchao, DANG Wei, et al. Effect of pyrolysis temperature on pyrolysis products of penicillin waste mycelium[J]. Environmental Protection of Chemical Industry, 2021, 41(2): 190-195. | |
| 24 | CHEN Yuan, DU Lin, LI Songgeng, et al. Pyrolysis of antibiotic mycelial dreg and characterization of obtained gas, liquid and biochar[J]. Journal of Hazardous Materials, 2021, 402: 123826. |
| 25 | YUAN Haoran, LI Chengyu, SHAN Rui, et al. Nitrogen-containing species evolution during co-pyrolysis of gentamicin residue and biomass[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105812. |
| 26 | LI Yifei, HONG Chen, LI Zaixing, et al. Study on the nitrogen migration mechanism during penicillin fermentation residue fast pyrolysis based on the substance transformation and canonical variational theory[J]. Science of The Total Environment, 2020, 737: 139739. |
| 27 | HU Qiang, CHENG Wei, MAO Qiaoting, et al. Study on the physicochemical structure and gasification reactivity of chars from pyrolysis of biomass pellets under different heating rates[J]. Fuel, 2022, 314: 122789. |
| 28 | CHEN Jianbiao, MU Lin, JIANG Bo, et al. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge[J]. Bioresource Technology, 2015, 192: 1-10. |
| 29 | WANG Zhiqiang, HONG Chen, XING Yi, et al. Thermal characteristics and product formation mechanism during pyrolysis of penicillin fermentation residue[J]. Bioresource Technology, 2019, 277: 46-54. |
| 30 | XIE Shengyu, WANG Yu, MA Chuan, et al. Pyrolysis of antibiotic mycelial residue for biochar: Kinetic deconvolution, biochar properties, and heavy metal immobilization[J]. Journal of Environmental Management, 2023, 328: 116956. |
| 31 | GUO Jiali, ZHENG Lei, LI Zifu, et al. Thermal decomposition of antibiotic mycelial fermentation residues in Ar, air, and CO2-N2 atmospheres by TG-FTIR method[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6): 2053-2060. |
| 32 | LIU Yuchen, ZHU Xiangdong, WEI Xinchao, et al. CO2 activation promotes available carbonate and phosphorus of antibiotic mycelial fermentation residue-derived biochar support for increased lead immobilization[J]. Chemical Engineering Journal, 2018, 334: 1101-1107. |
| 33 | HONG Chen, WANG Zhiqiang, XING Yi, et al. Investigation of free radicals and carbon structures in chars generated from pyrolysis of antibiotic fermentation residue[J]. RSC Advances, 2016, 6(112): 111226-111232. |
| 34 | 冯丽慧, 邢奕, 杨鹏宇. 抗生素菌渣热解及气态污染物排放特性的研究[J]. 安全与环境工程, 2018, 25(4): 89-96. |
| FENG Lihui, XING Yi, YANG Pengyu. Characteristics of pyrolysis and gaseous pollutant emissions of antibiotic bacterial residue[J]. Safety and Environmental Engineering, 2018, 25(4): 89-96. | |
| 35 | WANG Zhiqiang, HONG Chen, XING Yi, et al. Influences of ultrafine comminution on chemical properties of antibiotic bioferment residue[J]. Powder Technology, 2017, 321: 514-522. |
| 36 | HU Yuming, SHEN Yunpeng, WANG Jianlong. Pretreatment of antibiotic fermentation residues by combined ultrasound and alkali for enhancing biohydrogen production[J]. Journal of Cleaner Production, 2020, 268: 122190. |
| 37 | SHEN Yunpeng, ZHUAN Run, CHU Libing, et al. Inactivation of antibiotic resistance genes in antibiotic fermentation residues by ionizing radiation: Exploring the development of recycling economy in antibiotic pharmaceutical factory[J]. Waste Management, 2019, 84: 141-146. |
| 38 | CAI Chen, LIU Huiling, WANG Bing. Performance of microwave treatment for disintegration of cephalosporin mycelial dreg (CMD) and degradation of residual cephalosporin antibiotics[J]. Journal of Hazardous Materials, 2017, 331: 265-272. |
| 39 | WEI Xiao, HUANG Sheng, WU Youqing, et al. Effects of washing pretreatment on properties and pyrolysis biochars of penicillin mycelial residues[J]. Biomass and Bioenergy, 2022, 161: 106477. |
| 40 | WEI Xiao, HUANG Sheng, WU Youqing, et al. A comprehensive study on torrefaction of penicillin mycelial residues: Analysis of product characteristics and conversion mechanisms of N[J]. Fuel, 2022, 330: 125703. |
| 41 | WANG Mengmeng, LIU Huiling, CHENG Xiangming, et al. Hydrothermal treatment of lincomycin mycelial residues: Antibiotic resistance genes reduction and heavy metals immobilization[J]. Bioresource Technology, 2019, 271: 143-149. |
| 42 | CHEN Yuan, LIN Weigang, WU Hao, et al. Steam gasification of char derived from penicillin mycelial dreg and lignocellulosic biomass: Influence of P, K and Ca on char reactivity[J]. Energy, 2021, 228: 120605. |
| 43 | GONG Picheng, LIU Huiling, WANG Mengmeng, et al. Characteristics of hydrothermal treatment for the disintegration of oxytetracycline fermentation residue and inactivation of residual antibiotics[J]. Chemical Engineering Journal, 2020, 402: 126011. |
| 44 | CAI Chen, HUA Yu, LI Huiping, et al. Hydrothermal treatment of erythromycin fermentation residue: Harmless performance and bioresource properties[J]. Resources, Conservation and Recycling, 2020, 161: 104952. |
| 45 | WEI Xiao, HUANG Sheng, WU Youqing, et al. Effects of demineralization and devolatilization on fast pyrolysis behaviors and product characteristics of penicillin mycelial residues[J]. Journal of Hazardous Materials, 2022, 430: 128359. |
| 46 | WAN Zhonghao, SUN Yuqing, TSANG Daniel C W, et al. Customised fabrication of nitrogen-doped biochar for environmental and energy applications[J]. Chemical Engineering Journal, 2020, 401: 126136. |
| 47 | GAO Tong, SHI Wansheng, ZHAO Mingxing, et al. Preparation of spiramycin fermentation residue derived biochar for effective adsorption of spiramycin from wastewater[J]. Chemosphere, 2022, 296: 133902. |
| 48 | WU Jingqi, WANG Tongshuai, LIU Yuyan, et al. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar[J]. Chemosphere, 2022, 303(Pt 3): 135264. |
| 49 | XIAO Ran, SUN Xining, WANG Jiao, et al. Characteristics and phytotoxicity assay of biochars derived from a Zn-rich antibiotic residue[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 575-583. |
| 50 | NING Zhifang, XU Bin, ZHONG Weizhang, et al. Preparation of phosphoric acid modified antibiotic mycelial residues biochar: Loading of nano zero-valent iron and promotion on biogas production[J]. Bioresource Technology, 2022, 348: 126801. |
| 51 | WANG Qiuju, ZHANG Zhao, XU Guoren, et al. Magnetic porous biochar with nanostructure surface derived from penicillin fermentation dregs pyrolysis with K2FeO4 activation: Characterization and application in penicillin adsorption[J]. Bioresource Technology, 2021, 327: 124818. |
| 52 | GOPALAKRISHNAN Arthi, BADHULIKA Sushmee. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications[J]. Journal of Power Sources, 2020, 480: 228830. |
| 53 | ZHANG Xu, CAI Weiwei, ZHAO Shenlong, et al. Discarded antibiotic mycelial residues derived nitrogen-doped porous carbon for electrochemical energy storage and simultaneous reduction of antibiotic resistance genes (ARGs)[J]. Environmental Research, 2021, 192: 110261. |
| 54 | ZHOU Xiangyang, GUO Longlong, WANG Qian, et al. Nitrogen-doped porous graphitized carbon from antibiotic bacteria residues induced by sodium carbonate and application in Li-ion battery[J]. Journal of Electroanalytical Chemistry, 2021, 889: 115179. |
| 55 | HAO Rongjiang, DU Lin, GU Xiangyu, et al. Facile synthesis of N-rich carbon nanosheets derived from antibiotic mycelial dregs as efficient catalysts for peroxymonosulfate activation[J]. Separation and Purification Technology, 2023, 306: 122571. |
| 56 | 杜家兴, 李辰旭, 周星星, 等. 抗生素菌渣热解特性及氮迁移转化机理研究[J]. 燃料化学学报(中英文), 2023, 51(7): 949-958. |
| DU Jiaxing, LI Chenxu, ZHOU Xingxing, et al. Pyrolysis behavior of antibiotic residues and the mechanism of nitrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 949-958. | |
| 57 | HONG Chen, LI Yifei, SI Yanxiao, et al. Catalytic upgrading of penicillin fermentation residue bio-oil by metal-supported HZSM-5[J]. The Science of the Total Environment, 2021, 767: 144977. |
| 58 | FENG Lihui, LI Zaixing, HONG Chen, et al. Characteristic analysis of bio-oil from penicillin fermentation residue by catalytic pyrolysis[J]. Environmental Technology, 2023, 44(16): 2481-2489. |
| 59 | LI Yifei, HONG Chen, WANG Yijie, et al. Nitrogen migration mechanism during pyrolysis of penicillin fermentation residue based on product characteristics and quantum chemical analysis[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(20): 7721-7740. |
| 60 | ZHU Xiangdong, YANG Shijun, WANG Liang, et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environmental Pollution, 2016, 211: 20-27. |
| [1] | HAO Jingyuan, QI Baojin, WEI Jinjia. Characteristics of in situ pyrolysis products of tar-rich coal in Yushen area under different pressures [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 268-281. |
| [2] | CHEN Wangmi, XI Beidou, LI Mingxiao, YE Meiying, HOU Jiaqi, YU Chengze, WEI Yufang, MENG Fanhua. Research progress on carbon emission reduction technology for pyrolysis system [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 479-503. |
| [3] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
| [4] | XIONG Xiaohe, ZHANG Yinan, ZHANG Jingjing, YANG Fuxin, TAN Houzhang. Retired wind turbine blade coupled with coal fired boiler co-firing technology based on the drop tube experiments [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 555-563. |
| [5] | QUAN Cui, GAO Ningbo, ZHANG Guangtao, SUO Haojie. Leaching characteristics of heavy metals and polycyclic aromatic hydrocarbons from permeable bricks prepared by pyrolysis residue of oily sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5226-5233. |
| [6] | YIN Chenyang, LIU Yongfeng, CHEN Ruizhe, ZHANG Lu, SONG Jin’ou, LIU Haifeng. Kinetic simulation of n-hexane pyrolysis reaction based on quantitative calculations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4273-4282. |
| [7] | WANG Dingyou, CHEN Jian, FAN Ruxin, LI Dashun. Mechanism and engineering technology development of hydrocarbons pyrolysis to produce carbon black [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3551-3566. |
| [8] | JIN Lijun, LIU Zhengzheng, LI Yang, YANG He, HU Haoquan. Strategy and its application to improve tar yield by coupling catalytic activation of H-rich small molecule with coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3613-3619. |
| [9] | CAO Jingpei, YAO Naiyu, PANG Xinbo, ZHAO Xiaoyan, ZHAO Jingping, CAI Shijie, XU Min, FENG Xiaobo, YI Fengjiao. Research progress and development history of coal pyrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3620-3636. |
| [10] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
| [11] | WU Qi, BAI Boyang, YIN Yongjie, MA Xiaoxun. Relationship between the structure of macerals of Ordos lignite and its pyrolysis characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2370-2385. |
| [12] | HUANG Zibo, ZHOU Wenjing, WEI Jinjia. Product evolution and reaction mechanism of low-rank coal pyrolysis based on ReaxFF MD simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2409-2419. |
| [13] | LIU Xianzhe, HU Zhenzhong, HU Dawei, LI Xian, HE Shize, ZHAO Chunliang, XIA Ciliang, WU Bo, ZHANG Xiaoyong, LUO Guangqian, YAO Hong. Coking performance of extracts from degradative solvent extraction of low-rank coals for coal blending and coke making [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2420-2427. |
| [14] | JIAO Kunpeng, ZHAO Zitao, YOU Chenyi, MO Wenlong, GUO Fengjiao, YANG Xiaoqin, ZHANG Shupei, GUO Jia, WEI Xianyong, FAN Xing, AKRAM Naeem. Composition of the alkanolyses soluble portion and pyrolytic products distribution of the insoluble portion from Wucaiwan sub-bituminous coal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2449-2462. |
| [15] | SHA Li, SU Yingjia, LING Zichen, YU Xiaoyan, LI Shupeng, GUO Lili, XIONG Jing, FANG Lianhu, ZHANG Ran, ZHANG Shuting. Effect of bituminous coal mixing on the electro-dewatering performance of sludge [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2144-2152. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |