Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6260-6270.DOI: 10.16085/j.issn.1000-6613.2023-1894
• Materials science and technology • Previous Articles
ZHANG Bolin1,2(), YANG Zeyu1, ZHANG Shengyang1, LIU Bo1, ZHANG Shengen1()
Received:
2023-10-27
Revised:
2023-11-29
Online:
2024-12-07
Published:
2024-11-15
Contact:
ZHANG Shengen
张柏林1,2(), 杨泽宇1, 张生杨1, 刘波1, 张深根1()
通讯作者:
张深根
作者简介:
张柏林(1991—),男,博士研究生,研究方向为材料循环利用。E-mail:zhangbolin@ustb.edu.cn。
基金资助:
CLC Number:
ZHANG Bolin, YANG Zeyu, ZHANG Shengyang, LIU Bo, ZHANG Shengen. Utilization of waste wind turbine blade in building materials[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6260-6270.
张柏林, 杨泽宇, 张生杨, 刘波, 张深根. 废旧风电叶片在建筑材料中的应用[J]. 化工进展, 2024, 43(11): 6260-6270.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1894
1 | GLOBAL WIND ENERGY COUNCIL. Global Wind Report 2023[EB/OL]. (2023-03-27) [2023-10-15]. . |
2 | 国家能源局. 我国风电光伏发电总装机突破8亿千瓦[EB/OL]. (2023-05-25) [2023-06-09]. . |
National Energy Administration. China’s wind power and photovoltaic power generation total installed capacity exceeded 800 GW[EB/OL]. (2023-05-25) [2023-06-09]. . | |
3 | 陈吉朋, 王计安, 张雨秋, 等. 废弃风电叶片材料回收与再制造技术的研究进展[J]. 太阳能学报, 2023, 44(5): 328-335. |
CHEN Jipeng, WANG Ji’an, ZHANG Yuqiu, et al. Progress on recycling methods and remanufacturing technology of waste wind turbine blades[J]. Acta Energiae Solaris Sinica, 2023, 44(5): 328-335. | |
4 | AZIZI Mahdi, JAHANGIRIAN Alireza. Multi-site aerodynamic optimization of wind turbine blades for maximum annual energy production in East Iran[J]. Energy Science & Engineering, 2020, 8(6): 2169-2186. |
5 | CAO Dongyang, MALAKOOTI Sadeq, KULKARNI Vijay N, et al. The effect of resin uptake on the flexural properties of compression molded sandwich composites[J]. Wind Energy, 2022, 25(1): 71-93. |
6 | BEAUSON Justine, MADSEN Bo, TONCELLI Chiara, et al. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites[J]. Composites A: Applied Science and Manufacturing, 2016, 90: 390-399. |
7 | 123米!全球最长风电叶片在中复连众下线[J]. 中国建材, 2022, 71(9): 119. |
123 | meters! The world’s longest wind turbine blade is connected to the assembly line in China[J]. China Building Materials, 2022, 71(9): 119. |
8 | TAHIR Mazin, RAHIMIZADEH Amirmohammad, KALMAN Jordan, et al. Experimental and analytical investigation of 3D printed specimens reinforced by different forms of recyclates from wind turbine waste[J]. Polymer Composites, 2021, 42(9): 4533-4548. |
9 | FONTE Rosario, XYDIS George. Wind turbine blade recycling: An evaluation of the European market potential for recycled composite materials[J]. Journal of Environmental Management, 2021, 287: 112269. |
48 | ZHANG Mo, QIU Xinxin, SHEN Si, et al. Mechanical and thermal insulation properties of rGFRP fiber-reinforced lightweight fly-ash-slag-based geopolymer mortar[J]. Sustainability, 2023, 15(9): 7200. |
49 | FIGIELA Beate, KORNIEJENKO K, ŁACH M, et al. A study on geopolymer composites based on waste from wind turbine blades[J]. Materialwissenschaft und Werkstofftechnik, 2022, 53(4): 467-478. |
50 | Kinga PŁAWECKA, Jakub PRZYBYŁA, KORNIEJENKO Kinga, et al. Recycling of mechanically ground wind turbine blades as filler in geopolymer composite[J]. Materials, 2021, 14(21): 6539. |
51 | NOVAIS Rui M, CARVALHEIRAS João, CAPELA Marinélia N, et al. Incorporation of glass fibre fabrics waste into geopolymer matrices: An eco-friendly solution for off-cuts coming from wind turbine blade production[J]. Construction and Building Materials, 2018, 187: 876-883. |
52 | NOVAIS Rui M, CARVALHEIRAS J, SEABRA M P, et al. Effective mechanical reinforcement of inorganic polymers using glass fibre waste[J]. Journal of Cleaner Production, 2017, 166: 343-349. |
10 | YAZDANBAKHSH Ardavan, BANK Lawrence C, RIEDER Klaus-Alexander, et al. Concrete with discrete slender elements from mechanically recycled wind turbine blades[J]. Resources, Conservation and Recycling, 2018, 128: 11-21. |
11 | TAZI Nacef, KIM Junbeum, BOUZIDI Youcef, et al. Waste and material flow analysis in the end-of-life wind energy system[J]. Resources, Conservation and Recycling, 2019, 145: 199-207. |
12 | 沈德昌. 回望我国第一座陆上风电场[J]. 太阳能, 2019(2): 35-36. |
SHEN Dechang. Review of China’s first onshore wind farm[J]. Solar Energy, 2019(2): 35-36. | |
13 | PENDER Kyle, YANG Liu. Regenerating performance of glass fibre recycled from wind turbine blade[J]. Composites Part B: Engineering, 2020, 198: 108230. |
14 | SUSCHEM. Polymer composites circularity (White Paper)[EB/OL]. [2023-10-17]. . |
15 | 张柏林, 张生杨, 邬博宇, 等. 废旧风力发电机叶片资源化利用研究进展[J]. 工程科学学报, 2023, 45(12): 2150-2161. |
ZHANG Bolin, ZHANG Shengyang, WU Boyu, et al. Progress in resource utilization of waste wind turbine blades[J]. Chinese Journal of Engineering, 2023, 45(12): 2150-2161. | |
16 | JANI Hardik K, SINGH KACHHWAHA Surendra, NAGABABU Garlapati, et al. A brief review on recycling and reuse of wind turbine blade materials[J]. Materials Today: Proceedings, 2022, 62: 7124-7130. |
17 | KORNIEJENKO Kinga, KOZUB Barbara, Agnieszka BĄK, et al. Tackling the circular economy challenges—Composites recycling: Used tyres, wind turbine blades, and solar panels[J]. Journal of Composites Science, 2021, 5(9): 243. |
18 | 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050. |
ZHANG Shaohui, WANG Yan, NIU Ditao. Research progress of the application of waste fiber in cement-based materials[J]. Materials Reports, 2020, 34(23): 23042-23050. | |
19 | BEAUSON Justine, LILHOLT Hans, Povl BRØNDSTED. Recycling solid residues recovered from glass fibre-reinforced composites—A review applied to wind turbine blade materials[J]. Journal of Reinforced Plastics and Composites, 2014, 33(16): 1542-1556. |
20 | SOMMER Valentin, WALTHER Grit. Recycling and recovery infrastructures for glass and carbon fiber reinforced plastic waste from wind energy industry: A European case study[J]. Waste Management, 2021, 121: 265-275. |
21 | RATHORE Neelam, PANWAR Narayan Lal. Environmental impact and waste recycling technologies for modern wind turbines: An overview[J]. Waste Management & Research, 2023, 41(4): 744-759. |
22 | LIU Pu, MENG Fanran, BARLOW Claire Y. Wind turbine blade end-of-life options: An economic comparison[J]. Resources, Conservation and Recycling, 2022, 180: 106202. |
23 | MANJEET Rani, PRIYANKA Choudhary, VENKATA Krishnan, et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades[J]. Composites B: Engineering, 2021, 215: 108768. |
24 | JOUSTRA Jelle, FLIPSEN Bas, BALKENENDE Ruud. Structural reuse of high end composite products: A design case study on wind turbine blades[J]. Resources, Conservation and Recycling, 2021, 167: 105393. |
25 | PAULSEN Ebbe Bagge, ENEVOLDSEN Peter. A multidisciplinary review of recycling methods for end-of-life wind turbine blades[J]. Energies, 2021, 14(14): 4247. |
26 | 姜义, 马梓涵, 申培亮, 等. 废弃混凝土碳化资源化技术研究进展[J]. 硅酸盐学报, 2023, 51(9): 2433-2445. |
JIANG Yi, MA Zihan, SHEN Peiliang, et al. Research progress on carbonation technologies for valorising waste concrete: A review[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2433-2445. | |
27 | 畅莹, 冯立超, 刘卫生, 等. 废弃FRP的高效破碎及在沥青中应用[J]. 中国设备工程, 2017(2): 170-171. |
CHANG Ying, FENG Lichao, LIU Weisheng, et al. Efficient crushing of waste FRP and its application in asphalt[J]. China Plant Engineering, 2017(2): 170-171. | |
28 | YAZDANBAKHSH Ardavan, BANK Lawrence C, CHEN Chen. Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete[J]. Construction and Building Materials, 2016, 121: 278-284. |
29 | YAZDANBAKHSH Ardavan, BANK Lawrence C, CHEN Chen, et al. FRP-needles as discrete reinforcement in concrete[J]. Journal of Materials in Civil Engineering, 2017, 29(10): 04017175. |
30 | ZHOU Yingwu, WENG Yitao, LI Limiao, et al. Recycled GFRP aggregate concrete considering aggregate grading: Compressive behavior and stress-strain modeling[J]. Polymers, 2022, 14(3): 581. |
31 | SINGH Avishreshth, CHARAK Akhil, BILIGIRI Krishna Prapoorna, et al. Glass and carbon fiber reinforced polymer composite wastes in pervious concrete: Material characterization and lifecycle assessment[J]. Resources, Conservation and Recycling, 2022, 182: 106304. |
32 | BATURKIN Dmitry, MASMOUDI Radhouane, Arezki TAGNIT-HAMOU, et al. “feasibility study on the recycling of FRP materials from wind turbine blades in concrete”[M]//Lecture Notes in Civil Engineering. Cham: Springer International Publishing, 2021: 1729-1742. |
33 | BATURKIN Dmitry, HISSEINE Ousmane A, MASMOUDI Radhouane, et al. Valorization of recycled FRP materials from wind turbine blades in concrete[J]. Resources, Conservation and Recycling, 2021, 174: 105807. |
34 | FU Bing, LIU K C, CHEN J, et al. Concrete reinforced with macro fibres recycled from waste GFRP[J]. Construction and Building Materials, 2021, 310: 125063. |
35 | XU Guangti, LIU Mingjie, XIANG Yu, et al. Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete[J]. Journal of Cleaner Production, 2022, 379: 134550. |
36 | 温亚菲. 废弃风电叶片资源化处置与利用工艺对比分析[J]. 再生资源与循环经济, 2023, 16(3): 41-43. |
WEN Yafei. Comparative analysis of waste wind turbine blade resource disposal and utilization processes[J]. Recyclable Resources and Circular Economy, 2023, 16(3): 41-43. | |
37 | 马文静, 张宇彤, 杨春振, 等. 大宗风电退役风机叶片资源化回收利用技术研究进展[J]. 洁净煤技术, 2023, 29(10): 17-26. |
MA Wenjing, ZHANG Yutong, YANG Chunzhen, et al. Research progress on resource recycling technology of retired wind turbine blades in bulk wind power plants[J]. Clean Coal Technology, 2023, 29(10): 17-26. | |
38 | 季节, 王颢翔, 王琴, 等. 改性废旧橡胶粉对水泥胶砂性能的影响[J]. 建筑材料学报, 2021, 24(4): 679-686. |
JI Jie, WANG Haoxiang, WANG Qin, et al. Effect of modified rubber powder on performances of cement mortar[J]. Journal of Building Materials, 2021, 24(4): 679-686. | |
39 | MAMANPUSH Seyed Hossein, LI Hui, ENGLUND Karl, et al. Recycled wind turbine blades as a feedstock for second generation composites[J]. Waste Management, 2018, 76: 708-714. |
40 | RODIN Harry, NASSIRI Somayeh, ENGLUND Karl, et al. Recycled glass fiber reinforced polymer composites incorporated in mortar for improved mechanical performance[J]. Construction and Building Materials, 2018, 187: 738-751. |
41 | HAIDER Md Mostofa, NASSIRI Somayeh, ENGLUND Karl, et al. Exploratory study of flexural performance of mechanically recycled glass fiber reinforced polymer shreds as reinforcement in cement mortar[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(10): 1254-1267. |
42 | ZHOU Boyu, ZHANG Mo, WANG Li, et al. Experimental study on mechanical property and microstructure of cement mortar reinforced with elaborately recycled GFRP fiber[J]. Cement and Concrete Composites, 2021, 117: 103908. |
43 | 于雪梅, 朱晓华, 刘卫生, 等. 废弃风电叶片切割装置设计及破碎料的应用[J]. 工程塑料应用, 2018, 46(6): 60-64. |
YU Xuemei, ZHU Xiaohua, LIU Weisheng, et al. Design of cutting device for wasted wind turbine blades and application of debris[J]. Engineering Plastics Application, 2018, 46(6): 60-64. | |
44 | NGUYEN Hoang, CARVELLI Valter, FUJII Toru, et al. Cement mortar reinforced with reclaimed carbon fibres, CFRP waste or prepreg carbon waste[J]. Construction and Building Materials, 2016, 126: 321-331. |
45 | BINI M P M, ANTUNES M L P, SOTTOVIA L. Estudo da Incorporação de Resíduo de Fabricação de Pás Eólicas para Aerogeradores em Cimento Portland[C]//3rd International Workshop | Advances in Cleaner Production, São Paulo, 2011. |
46 | OLIVEIRA Paulo Silas, ANTUNES Maria Lúcia Pereira, CRUZ Nilson Cristino DA, et al. Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction[J]. Journal of Cleaner Production, 2020, 274: 122948. |
47 | 魏铭, 张长森, 王旭, 等. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 254-263. |
WEI Ming, ZHANG Changsen, WANG Xu, et al. Alkali-activated materials modified with micro-nano additives: A review[J]. Materials Reports, 2023, 37(4): 254-263. |
[1] | ZHANG Zheng, LIU Lin, LI Zichen, WANG Mengqi, HUANG Chunyan, GE Yuanyuan. Preparation of copper-loaded geopolymer microspheres and their catalytic degradation of bisphenol S [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5290-5301. |
[2] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[3] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[4] | GAO Jiangyu, ZHANG Yaojun, HE Panyang, LIU Licai, ZHANG Fengye. Recent progress on the fabrication and properties of phosphobase geopolymer [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1411-1425. |
[5] | GUO Ruonan, YI Zhenwei, WANG Tao, SONG Jiayi, FANG Mengxiang. Assessment method of CO2 uptake ratio of carbonation-cured concrete based on reactive compositions [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2722-2732. |
[6] | HUANG Jiaqi, GE Yuanyuan, LI Zhili, WANG Yipin, CUI Xuemin. Preparation of biochar/geopolymer composite film and its removal of tetracycline [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 427-434. |
[7] | SONG Ying, GE Yuanyuan, HAN Yurong, ZHOU Qinyi, HUANG Laitao, ZHOU Jian. Preparation and properties of GPs-PVA/MCE multifunctional hybrid membrane [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6287-6294. |
[8] | LIU Jing, MIAO Tongmeng, JIANG Ziqing, XU Yongjie, ZHONG Zilong, YU Peiyun. Research progress of surface protection coatings for concrete [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5615-5623. |
[9] | Nan YU, Chao CHEN, Jie LIN, Fengtao HAN, Ping ZOU, Yipeng HE, Qingling HU. Thermal properties of phase change materials used in buildings for solar- phase change thermal storage curing of precast concrete components [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 297-304. |
[10] | LIU Shouqing, LUO Zhongqiu, HE Sen, ZHOU Xintao, JIA Qingming. Solidification/stabilization of calcium arsenate waste with blast furnace slag and fly ash geopolymer materials [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2660-2666. |
[11] | LUO Liqun, SHU Wei, CHENG Qilin, TAN Xusheng. Reaction mechanism on autoclaved aerated concrete made from low-grade vanadium titanium iron tailings [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1482-1490. |
[12] | MA Xiaoli, XIANG Yulin. Feasibility study on foam concrete prepared by modification sludge [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2997-3001. |
[13] | WANG Cheng,HUO Jichuan,LEI Yonglin,LI Xian,YUAN Yanhong,LIU Jiaqi,GAO Juan. Preparation of concrete foaming agent by yeast protein modification and optimization of processing condition [J]. Chemical Industry and Engineering Progree, 2011, 30(3): 621-. |
[14] | YAN Handong,MA Xiuxing,HUANG Guohui. Advances in effects of waste rubber aggregate on deformation and durability properties of cement-based materials [J]. Chemical Industry and Engineering Progree, 2008, 27(3): 395-. |
[15] | JIANG Yu;PANG Hao;LIAO Bing. Research and application of polycarboxylate type superplasticizers [J]. Chemical Industry and Engineering Progree, 2007, 26(1): 37-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |