Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 391-402.DOI: 10.16085/j.issn.1000-6613.2024-0743
• Materials science and technology • Previous Articles Next Articles
WANG Yuhua1(), ZHOU Xue2, GU Chuantao2()
Received:
2024-05-06
Revised:
2024-06-11
Online:
2024-12-06
Published:
2024-11-20
Contact:
GU Chuantao
通讯作者:
谷传涛
作者简介:
王于华(1986—),女,硕士,研究方向为有机功能材料。E-mail:wangyuhua0721@126.com。
CLC Number:
WANG Yuhua, ZHOU Xue, GU Chuantao. Recent advances in regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 391-402.
王于华, 周雪, 谷传涛. 用于高性能全聚合物太阳能电池的区域规整的聚小分子受体研究进展[J]. 化工进展, 2024, 43(S1): 391-402.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0743
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PYT | PBDB-T | 0.892 | 0.58 | 20.8 | 0.696 | 12.9 | [ | |
√ | PZT | PBDB-T | 0.909 | 0.52 | 23.2 | 0.686 | 14.5 | [ | |
√ | PZT-γ | PBDB-T | 0.896 | 0.51 | 24.7 | 0.713 | 15.8 | [ | |
√ | PYT-2S | PM6 | 0.941 | 0.523 | 22.3 | 0.707 | 14.8 | [ | |
√ | PYT-1S1Se | PM6 | 0.926 | 0.502 | 24.1 | 0.730 | 16.3 | [ | |
√ | PYT-2Se | PM6 | 0.908 | 0.510 | 23.9 | 0.714 | 15.5 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PYT | PBDB-T | 0.892 | 0.58 | 20.8 | 0.696 | 12.9 | [ | |
√ | PZT | PBDB-T | 0.909 | 0.52 | 23.2 | 0.686 | 14.5 | [ | |
√ | PZT-γ | PBDB-T | 0.896 | 0.51 | 24.7 | 0.713 | 15.8 | [ | |
√ | PYT-2S | PM6 | 0.941 | 0.523 | 22.3 | 0.707 | 14.8 | [ | |
√ | PYT-1S1Se | PM6 | 0.926 | 0.502 | 24.1 | 0.730 | 16.3 | [ | |
√ | PYT-2Se | PM6 | 0.908 | 0.510 | 23.9 | 0.714 | 15.5 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PBI-α | PM6 | 0.930 | — | 19.0 | 0.646 | 11.4 | [ | |
√ | PBI-β | PM6 | 1.030 | — | 16.1 | 0.684 | 11.3 | [ | |
√ | PY-IT | PM6 | 0.933 | — | 22.30 | 0.723 | 15.05 | [ | |
√ | PY-OT | PM6 | 0.954 | — | 16.82 | 0.626 | 10.04 | [ | |
√ | PY-IOT | PM6 | 0.939 | — | 19.71 | 0.656 | 12.12 | [ | |
√ | PY-IT | PQM-Cl | 0.920 | — | 24.3 | 0.807 | 18.0 | [ | |
√ | PY-IT | PQB-2 | 0.942 | — | 24.2 | 0.795 | 18.1 | [ | |
√ | PY-IT | PBDB-TF | 0.941 | 0.549 | 23.4 | 0.757 | 16.7 | [ | |
√ | PY-IT | PBQx-TF | 0.925 | 0.564 | 23.8 | 0.772 | 17.0 | [ | |
√ | PYF-T | PM6 | 0.891 | 0.53 | 23.1 | 0.680 | 14.0 | [ | |
√ | PYF-T-o | PM6 | 0.901 | 0.52 | 23.3 | 0.724 | 15.2 | [ | |
√ | PY-T | PM6 | 0.93 | 0.53 | 21.30 | 0.674 | 13.37 | [ | |
√ | PY2F-T | PM6 | 0.86 | 0.52 | 24.27 | 0.726 | 15.22 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PBI-α | PM6 | 0.930 | — | 19.0 | 0.646 | 11.4 | [ | |
√ | PBI-β | PM6 | 1.030 | — | 16.1 | 0.684 | 11.3 | [ | |
√ | PY-IT | PM6 | 0.933 | — | 22.30 | 0.723 | 15.05 | [ | |
√ | PY-OT | PM6 | 0.954 | — | 16.82 | 0.626 | 10.04 | [ | |
√ | PY-IOT | PM6 | 0.939 | — | 19.71 | 0.656 | 12.12 | [ | |
√ | PY-IT | PQM-Cl | 0.920 | — | 24.3 | 0.807 | 18.0 | [ | |
√ | PY-IT | PQB-2 | 0.942 | — | 24.2 | 0.795 | 18.1 | [ | |
√ | PY-IT | PBDB-TF | 0.941 | 0.549 | 23.4 | 0.757 | 16.7 | [ | |
√ | PY-IT | PBQx-TF | 0.925 | 0.564 | 23.8 | 0.772 | 17.0 | [ | |
√ | PYF-T | PM6 | 0.891 | 0.53 | 23.1 | 0.680 | 14.0 | [ | |
√ | PYF-T-o | PM6 | 0.901 | 0.52 | 23.3 | 0.724 | 15.2 | [ | |
√ | PY-T | PM6 | 0.93 | 0.53 | 21.30 | 0.674 | 13.37 | [ | |
√ | PY2F-T | PM6 | 0.86 | 0.52 | 24.27 | 0.726 | 15.22 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PZ1 | PBDB-T | 0.830 | — | 16.05 | 0.690 | 9.19 | [ | |
√ | PBTIC-γ-2F2T | PM6 | 0.95 | 0.560 | 22.56 | 0.669 | 14.34 | [ | |
√ | PBTIC-m-2F2T | PM6 | 0.99 | 0.528 | 9.72 | 0.338 | 3.26 | [ | |
√ | PBTIC-γ-2T | PM6 | 0.95 | 0.569 | 20.85 | 0.602 | 11.92 | [ | |
√ | Y5-Se-Out | PBDB-T | 0.88 | 0.569 | 16.09 | 0.56 | 7.92 | [ | |
√ | Y5-Se-Mix | PBDB-T | 0.89 | — | 17.95 | 0.58 | 9.33 | [ | |
√ | Y5-Se-In | PBDB-T | 0.86 | 0.588 | 21.74 | 0.72 | 13.38 | [ | |
√ | Y5-BiSe-Out | PBDB-T | 0.92 | 0.559 | 18.12 | 0.66 | 10.67 | [ | |
√ | Y5-BiSe-Mix | PBDB-T | 0.92 | — | 17.44 | 0.60 | 9.58 | [ | |
√ | Y5-BiSe-In | PBDB-T | 0.86 | 0.597 | 16.54 | 0.59 | 8.52 | [ | |
√ | PY-V-γ | PM6 | 0.912 | 0.54 | 24.8 | 0.758 | 17.1 | [ | |
√ | PY-T-γ | PM6 | 0.929 | 0.55 | 24.1 | 0.719 | 16.1 | [ | |
√ | PY-2T-γ | PM6 | 0.933 | 0.56 | 23.5 | 0.699 | 15.3 | [ | |
√ | L14 | PM6 | 0.953 | — | 21.12 | 0.716 | 14.41 | [ | |
√ | L15 | PM6 | 0.953 | — | 22.21 | 0.719 | 15.22 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PZ1 | PBDB-T | 0.830 | — | 16.05 | 0.690 | 9.19 | [ | |
√ | PBTIC-γ-2F2T | PM6 | 0.95 | 0.560 | 22.56 | 0.669 | 14.34 | [ | |
√ | PBTIC-m-2F2T | PM6 | 0.99 | 0.528 | 9.72 | 0.338 | 3.26 | [ | |
√ | PBTIC-γ-2T | PM6 | 0.95 | 0.569 | 20.85 | 0.602 | 11.92 | [ | |
√ | Y5-Se-Out | PBDB-T | 0.88 | 0.569 | 16.09 | 0.56 | 7.92 | [ | |
√ | Y5-Se-Mix | PBDB-T | 0.89 | — | 17.95 | 0.58 | 9.33 | [ | |
√ | Y5-Se-In | PBDB-T | 0.86 | 0.588 | 21.74 | 0.72 | 13.38 | [ | |
√ | Y5-BiSe-Out | PBDB-T | 0.92 | 0.559 | 18.12 | 0.66 | 10.67 | [ | |
√ | Y5-BiSe-Mix | PBDB-T | 0.92 | — | 17.44 | 0.60 | 9.58 | [ | |
√ | Y5-BiSe-In | PBDB-T | 0.86 | 0.597 | 16.54 | 0.59 | 8.52 | [ | |
√ | PY-V-γ | PM6 | 0.912 | 0.54 | 24.8 | 0.758 | 17.1 | [ | |
√ | PY-T-γ | PM6 | 0.929 | 0.55 | 24.1 | 0.719 | 16.1 | [ | |
√ | PY-2T-γ | PM6 | 0.933 | 0.56 | 23.5 | 0.699 | 15.3 | [ | |
√ | L14 | PM6 | 0.953 | — | 21.12 | 0.716 | 14.41 | [ | |
√ | L15 | PM6 | 0.953 | — | 22.21 | 0.719 | 15.22 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | RRd-C12 | PBDB-T | 0.93 | — | 19.14 | 0.54 | 9.39 | [ | |
√ | RRd-C20 | PBDB-T | 0.93 | — | 19.67 | 0.63 | 11.59 | [ | |
√ | RRd-C24 | PBDB-T | 0.93 | — | 20.34 | 0.67 | 12.18 | [ | |
√ | RRg-C20 | PBDB-T | 0.88 | — | 23.54 | 0.73 | 15.12 | [ | |
√ | RRg-C24 | PBDB-T | 0.88 | — | 21.67 | 0.71 | 13.53 | [ | |
√ | PIR-C39 | PTzBI-Si | 0.89 | 0.59 | 19.6 | 0.660 | 11.5 | [ | |
√ | PRi-C39 | PTzBI-Si | 0.90 | 0.57 | 23.1 | 0.694 | 14.4 | [ | |
√ | PRo-C39 | PTzBI-Si | 0.83 | 0.63 | 22.1 | 0.732 | 13.4 | [ | |
√ | PA-6 | JD40 | 0.92 | 0.58 | 22.42 | 0.724 | 14.99 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | RRd-C12 | PBDB-T | 0.93 | — | 19.14 | 0.54 | 9.39 | [ | |
√ | RRd-C20 | PBDB-T | 0.93 | — | 19.67 | 0.63 | 11.59 | [ | |
√ | RRd-C24 | PBDB-T | 0.93 | — | 20.34 | 0.67 | 12.18 | [ | |
√ | RRg-C20 | PBDB-T | 0.88 | — | 23.54 | 0.73 | 15.12 | [ | |
√ | RRg-C24 | PBDB-T | 0.88 | — | 21.67 | 0.71 | 13.53 | [ | |
√ | PIR-C39 | PTzBI-Si | 0.89 | 0.59 | 19.6 | 0.660 | 11.5 | [ | |
√ | PRi-C39 | PTzBI-Si | 0.90 | 0.57 | 23.1 | 0.694 | 14.4 | [ | |
√ | PRo-C39 | PTzBI-Si | 0.83 | 0.63 | 22.1 | 0.732 | 13.4 | [ | |
√ | PA-6 | JD40 | 0.92 | 0.58 | 22.42 | 0.724 | 14.99 | [ |
1 | TU Qisheng, MA Yunlong, SHEN Shengwei, et al. Wide bandgap polymer donors with an acceptor1-π-acceptor2-π configuration for efficient polymer solar cells[J]. Chemical Engineering Journal, 2024, 489: 151444. |
2 | GU Chuantao, ZHAO Yu, KANG Xiao, et al. Cost-effective polymer donors based on pyridine for efficient nonfullerene polymer solar cells[J]. Polymer, 2024, 299: 126926. |
3 | SUN Yuandong, WANG Liang, GUO Chuanhang, et al. π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency[J]. Journal of the American Chemical Society, 2024, 146(17): 12011-12019. |
4 | LUO Zhenghui, LIU Tao, MA Ruijie, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15[J]. Advanced Materials, 2020, 32(48): 2005942. |
5 | FU Huiting, LI Yuxiang, YU Jianwei, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor[J]. Journal of the American Chemical Society, 2021, 143(7): 2665-2670. |
6 | YU Han, PAN Mingao, SUN Rui, et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2 % efficiency[J]. Angewandte Chemie International Edition, 2021, 60(18): 10137-10146. |
7 | JIA Jianchao, HUANG Qiri, JIA Tao, et al. Fine-tuning batch factors of polymer acceptors enables a binary all-polymer solar cell with high efficiency of 16.11%[J]. Advanced Energy Materials, 2022, 12(3): 2103193. |
8 | YU G, A-J HEEGER. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. Journal of Applied Physics, 1995, 78(7): 4510-4515. |
9 | YAN He, CHEN Zhihua, ZHENG Yan, et al. A high-mobility electron-transporting polymer for printed transistors[J]. Nature, 2009, 457(7230): 679-686. |
10 | ZHU Lei, ZHONG Wenkai, QIU Chaoqun, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication[J]. Advanced Materials, 2019, 31(41): 1902899. |
11 | GUO Yikun, LI Yunke, AWARTANI Omar, et al. A vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions[J]. Advanced Materials, 2016, 28(38): 8483-8489. |
12 | GUO Yikun, LI Yunke, AWARTANI Omar, et al. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor[J]. Advanced Materials, 2017, 29(26): 1700309. |
13 | WANG Yingfeng, YAN Zhenglong, UDDIN Mohammad Afsar, et al. Triimide-functionalized n-type polymer semiconductors enabling all-polymer solar cells with power conversion efficiencies approaching 9%[J]. Solar RRL, 2019, 3(7): 1900107. |
14 | SHI Yongqiang, GUO Han, HUANG Jiachen, et al. Distannylated bithiophene imide: Enabling high-performance n-type polymer semiconductors with an acceptor-acceptor backbone[J]. Angewandte Chemie International Edition, 2020, 59(34): 14449-14457. |
15 | ZHAO Ruyan, LIN Baojun, FENG Jirui, et al. Amorphous polymer acceptor containing B←N units matches various polymer donors for all-polymer solar cells[J]. Macromolecules, 2019, 52(18): 7081-7088. |
16 | ZHAO Ruyan, WANG Ning, YU Yingjian, et al. Organoboron polymer for 10% efficiency all-polymer solar cells[J]. Chemistry of Materials, 2020, 32(3): 1308-1314. |
17 | SHI Shengbin, CHEN Peng, CHEN Yao, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells[J]. Advanced Materials, 2019, 31(46): 1905161. |
18 | FENG Kui, HUANG Jiachen, ZHANG Xianhe, et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV[J]. Advanced Materials, 2020, 32(30): 2001476. |
19 | GU Chuantao, SU Xinze, LI Yonghai, et al. N-type polymer electron acceptors for organic solar cells[J]. Molecular Systems Design & Engineering, 2022, 7(11): 1364-1384. |
20 | DU Jiaqi, HU Ke, MENG Lei, et al. High-performance all-polymer solar cells: Synthesis of polymer acceptor by a random ternary copolymerization strategy[J]. Angewandte Chemie International Edition, 2020, 59(35): 15181-15185. |
21 | GU Chuantao, WANG Xunchang, WANG Haicheng, et al. Recent advances in small molecular design for high performance non-fullerene organic solar cells[J]. Molecular Systems Design & Engineering, 2022, 7(8): 832-855. |
22 | ZHANG Zhiguo, YANG Yankang, YAO Jia, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2017, 56(43): 13503-13507. |
23 | LI Ruonan, XU Yunhua, WANG Chao, et al. Modulating the central units of polymerized nonfused electron acceptors for all-polymer solar cells[J]. ACS Applied Polymer Materials, 2024, 6(9): 5021-5027. |
24 | ZENG Liang, MA Ruijie, ZHOU Zhongxin, et al. Ester side chains engineered quinoxaline based D-A copolymers for high-efficiency all-polymer solar cells[J]. Chemical Engineering Journal, 2022, 429: 132551. |
25 | ZHANG Zhiguo, LI Yongfang. Polymerized small-molecule acceptors for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2021, 60(9): 4422-4433. |
26 | ZHANG Long, JIA Tao, PAN Langheng, et al. 15.4% Efficiency all-polymer solar cells[J]. Science China Chemistry, 2021, 64(3): 408-412. |
27 | JIA Tao, ZHANG Jiabin, ZHANG Kai, et al. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3’,2’:3, 4;2”,3”:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor[J]. Journal of Materials Chemistry A, 2021, 9(14): 8975-8983. |
28 | ZHANG Tao, XU Ye, YAO Huifeng, et al. Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency[J]. Energy & Environmental Science, 2023, 16(4): 1581-1589. |
29 | MA Lijiao, CUI Yong, ZHANG Jianqi, et al. High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology[J]. Advanced Materials, 2023, 35(9): e2208926. |
30 | WANG Jingwen, CUI Yong, XU Ye, et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness[J]. Advanced Materials, 2022, 34(35): 2205009. |
31 | QU Jianfei, LI Duning, WANG Huan, et al. Bromination of the small-molecule acceptor with fixed position for high-performance solar cells[J]. Chemistry of Materials, 2019, 31(19): 8044-8051. |
32 | WANG Huan, HAN Liang, ZHOU Jiadong, et al. Isomerism: Minor changes in the bromine substituent positioning lead to notable differences in photovoltaic performance[J]. CCS Chemistry, 2021, 3(9): 2591-2601. |
33 | SUN Cheng, LEE Jin-Woo, SEO Soodeok, et al. Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency[J]. Advanced Energy Materials, 2022, 12(3): 2103239. |
34 | YANG Hang, FAN Hongyu, WANG Zhen, et al. Impact of isomer design on physicochemical properties and performance in high-efficiency all-polymer solar cells[J]. Macromolecules, 2020, 53(20): 9026-9033. |
35 | WANG Hengtao, CHEN Hui, XIE Weicheng, et al. Configurational isomers induced significant difference in all-polymer solar cells[J]. Advanced Functional Materials, 2021, 31(26): 2100877. |
36 | KONG Yuxin, LI Yuxiang, YUAN Jianyu, et al. Polymerizing small molecular acceptors for efficient all-polymer solar cells[J]. InfoMat, 2022, 4(3): e12271. |
37 | MA Ruijie, ZHOU Kangkang, SUN Yanna, et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors[J]. Matter, 2022, 5(2): 725-734. |
38 | LEE Jin-Woo, SUN Cheng, KIM Dong Jun, et al. Donor-acceptor alternating copolymer compatibilizers for thermally stable, mechanically robust, and high-performance organic solar cells[J]. ACS Nano, 2021, 15(12): 19970-19980. |
39 | JIA Tao, ZHANG Jiabin, TANG Haoran, et al. Synchronously regulating the alkyl side-chain and regioisomer of polymerized small molecule acceptor enabling highly efficient all-polymer solar cells processed with non-halogenated solvent[J]. Chemical Engineering Journal, 2022, 433: 133575. |
40 | FU Huiting, FAN Qunping, GAO Wei, et al. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone[J]. Science China Chemistry, 2022, 65(2): 309-317. |
41 | YU Han, WANG Yan, KIM Ha Kyung, et al. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency[J]. Advanced Materials, 2022, 34(27): 2200361. |
42 | LAI Hanjian, CHEN Hui, ZHU Yulin, et al. Aggregation of small molecule and polymer acceptors with 2D-fused backbones in organic solar cells[J]. Macromolecules, 2022, 55(8): 3353-3360. |
43 | YU Han, LUO Siwei, SUN Rui, et al. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition[J]. Advanced Functional Materials, 2021, 31(25): 2100791. |
44 | SEO Soodeok, SUN Cheng, LEE Jin-Woo, et al. Importance of high-electron mobility in polymer acceptors for efficient all-polymer solar cells: Combined engineering of backbone building unit and regioregularity[J]. Advanced Functional Materials, 2022, 32(5): 2108508. |
45 | SUN Huiliang, LIU Bin, MA Yunlong, et al. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells[J]. Advanced Materials, 2021, 33(37): 2102635. |
46 | ZHANG Guichuan, LIN Francis R, QI Feng, et al. Renewed prospects for organic photovoltaics[J]. Chemical Reviews, 2022, 122(18): 14180-14274. |
47 | YAN Lu, ZHANG Heng, AN Qiaoshi, et al. Regioisomer-free difluoro-monochloro terminal-based hexa-halogenated acceptor with optimized crystal packing for efficient binary organic solar cells[J]. Angewandte Chemie International Edition, 2022, 61(46): e202209454. |
48 | ZHOU Zichun, LIU Wenrui, ZHOU Guanqing, et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation[J]. Advanced Materials, 2020, 32(4): 1906324. |
49 | JIN Jianghao, WANG Qiao, MA Kaige, et al. Recent developments of polymer solar cells with photovoltaic performance over 17%[J]. Advanced Functional Materials, 2023, 33(14): 2213324. |
50 | SUN Huiliang, YU Han, SHI Yongqiang, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells[J]. Advanced Materials, 2020, 32(43): 2004183. |
51 | BAI Hairui, AN Qiaoshi, JIANG Mengyun, et al. Isogenous asymmetric-symmetric acceptors enable efficient ternary organic solar cells with thin and 300nm thick active layers simultaneously[J]. Advanced Functional Materials, 2022, 32(26): 2200807. |
52 | LIU Tao, YANG Tao, MA Ruijie, et al. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend[J]. Joule, 2021, 5(4): 914-930. |
53 | SUN Rui, WANG Wei, YU Han, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors[J]. Joule, 2021, 5(6): 1548-1565. |
54 | HAN Chenyu, WANG Jianxiao, ZHANG Shuai, et al. Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions[J]. Advanced Materials, 2023, 35(10): 2208986. |
55 | LI Yonghai, YU Lu, CHEN Liangliang, et al. Subtle side chain triggers unexpected two-channel charge transport property enabling 80% fill factors and efficient thick-film organic photovoltaics[J]. The Innovation, 2021, 2(1): 100090. |
56 | XIAO Cong, WANG Xunchang, ZHONG Tian, et al. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells[J]. Advanced Science, 2023, 10(7): 2206580. |
57 | WANG Xunchang, LI Zhiya, ZHENG Xufan, et al. High-efficiency all-small-molecule organic solar cells based on new molecule donors with conjugated symmetric/asymmetric hybrid cyclopentyl-hexyl side chains[J]. Advanced Functional Materials, 2023, 33(24): 2300323. |
58 | SHEN Wenfei, ZHAO Guoqing, ZHANG Xiaolin, et al. Using dual microresonant cavity and plasmonic effects to enhance the photovoltaic efficiency of flexible polymer solar cells[J]. Nanomaterials, 2020, 10(5): 944. |
59 | JAIN Ajay, KOTHARI Richa, TYAGI V V, et al. Advances in organic solar cells: Materials, progress, challenges and amelioration for sustainable future[J]. Sustainable Energy Technologies and Assessments, 2024, 63: 103632. |
60 | HAN Jianhua, XU Han, PALETI Sri Harish Kumar, et al. Vertical stratification engineering of insulating poly(aryl ether)s enables 18.6% organic solar cells with improved stability[J]. ACS Energy Letters, 2022, 7(9): 2927-2936. |
61 | ZHANG Shuai, BI Fuzhen, HAN Jianhua, et al. Boosts charge utilization and enables high performance organic solar cells by marco- and micro- synergistic method[J]. Nano Energy, 2022, 102: 107742. |
62 | WANG Jianxiao, HAN Chenyu, HAN Jianhua, et al. Synergetic strategy for highly efficient and super flexible thick-film organic solar cells[J]. Advanced Energy Materials, 2022, 12(31): 2201614. |
[1] | LI Xinyue, LI Zhenjing, HAN Yihang, GUO Yongqiang, YAN Yu, KAREMULATI Halimire, ZHAO Huiji, CHAI Yongming, LIU Dong, YIN Changlong. Research progress on catalysts for the production of green diesel by hydrodeoxidation of lipid [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 351-364. |
[2] | WANG Yue, ZHANG Xuerui, SONG Xiwen, CHEN Boyan, LI Qingxun, ZHONG Haijun, HU Xiaowei, HE Shuai. Overview and prospect of ammonia synthesis with hydrogen produced via water electrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 180-188. |
[3] | LIAO Xu, ZHOU Jun, LUO Jie, ZENG Ruilin, WANG Zeyu, LI Zunhua, LIN Jinqing. Research progress on CO2 cycloaddition reaction catalyzed by porous ionic polymers [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4925-4940. |
[4] | SUN Shiwan, LI Xin, ZHOU Han. Review of radiative cooling paint and its applications in the fields of energy and environment [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4961-4969. |
[5] | WANG Yang, ZHANG Miaomiao, LYU Yang, HOU Cuihong, WEI Changzhou, MA Wenqi, ZHANG Fusuo, SHEN Jianbo. pH-responsive materials and their applications in intelligent fertilizer [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4477-4489. |
[6] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[7] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[8] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
[9] | CHEN Keyu, XU Jinxin, WU Guibo, YANG Zhe, CHEN Jiahong, CHEN Yongli. Current situation and development prospect of green ammonia industry [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2544-2553. |
[10] | XUE Yunjiao, ZHANG Xuan, LIU Yang, CHEN Yuhuan, FANG Jing, YANG Fang. Pseudo-protein biomaterials: Classification, synthesis and application [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2001-2016. |
[11] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[12] | WANG Xiong, KANG Wenqian, REN Yue, QIAO Tongsen, ZHANG Peng, HUANG Anping, LI Guangquan. Pilot scale production of porous organic polymers and their application in polyolefin catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1412-1417. |
[13] | WANG Kai, LUO Mingliang, LI Mingzhong, HUANG Feifei, PU Chunsheng, PU Jingyang, FAN Qiao. Research progress of polyethyleneimine crosslinked polymer gel system in water-drive reservoirs [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1506-1523. |
[14] | ZHANG Wentao, ZHOU Jiahui, ZHANG Runzhi, WANG Luojia, XU Gang. Optimization strategy of wind and solar hydrogen production alkaline electrolyzer cluster considering energy consumption characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6119-6128. |
[15] | FENG Kai, MENG Hao, YANG Yusen, WEI Min. Research progress on catalysts for hydrogen production by methanol steam reforming [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5498-5516. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |